We study the upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations
$\begin{matrix} i{{\partial }_{t}}u+\frac{1}{2}\Delta u=\lambda {{\left| u \right|}^{p-1}}u,\left( t,x \right)\in {{\mathbb{R}}^{+}}\text{ }\!\!\times\!\!\text{ }{{\mathbb{R}}^{n}}, \\ u\left( 0,x \right)={{u}_{0}}\left( x \right),x\in {{\mathbb{R}}^{n}}, \\ \end{matrix}$
in space dimensions $n=1,2$ or $3$ , where $\lambda =\lambda _{1}+i\lambda _{2},$ $\lambda _{j}∈ \mathbb{R},$ $j=1,2,$ $\lambda _{2}<0$ and the subcritical order of nonlinearity $p=1+\frac{2}{n}-μ ,$ where $μ >0$ is small enough.
Citation: |
G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition, Academic Press, Inc. , 1995.
doi: 10.1007/3-540-46629-0_9.![]() ![]() |
|
J. Bergh and J. Löfström, Interpolation Spaces. An introduction 2nd edition, Springer-Verlag, Berlin-N. Y. , 1976.
doi: 10.1007/978-3-642-66451-9.![]() ![]() ![]() |
|
T. Cazenave,
Semilinear Schrödinger Equations Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010.![]() ![]() ![]() |
|
J. Ginibre
, T. Ozawa
and G. Velo
, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Annales de l'I.H.P. Physique théorique, 60 (1994)
, 211-239.
![]() ![]() |
|
N. Hayashi
, C. Li
and P. I. Naumkin
, Nonlinear Schrödinger systems in 2d with nondecaying final data, J. Differential Equations, 260 (2016)
, 1472-1495.
doi: 10.1016/j.jde.2015.09.033.![]() ![]() ![]() |
|
N. Hayashi, C. Li and P. I. Naumkin, Time decay for nonlinear dissipative Schrödinger equations in optical fields Advances in Mathematical Physics 2016 (2016), 7 pages.
doi: 10.1155/2016/3702738.![]() ![]() ![]() |
|
N. Hayashi, Li, Chunhua and P. I. Naumkin, Dissipative nonlinear Schrödinger equations with singular data,
J. Appl. Computat. Math 5 (2016), 1000304.
![]() |
|
G. Jin
, Y. Jin
and C. Li
, The initial value problem for nonlinear Schödinger equations with a dissipative nonlinearity in one space dimension, J. Evolution Equations, 16 (2016)
, 983-995.
doi: 10.1007/s00028-016-0327-5.![]() ![]() ![]() |
|
N. Kita
and A. Shimomura
, Asymptotic behavior of solutions to Schrödinger equations with a subcritical dissipative nonlinearity, J. Differential Equations, 242 (2007)
, 192-210.
doi: 10.1016/j.jde.2007.07.003.![]() ![]() ![]() |
|
N. Kita
and A. Shimomura
, Large time behavior of solutions to Schrödinger equations with a dissipative nonlinearity for arbitrarily large initial data, J. Math. Soc. Japan, 61 (2009)
, 39-64.
![]() ![]() |
|
C. Li
and N. Hayashi
, Critical nonlinear Schrödinger equations with data in homogeneous weighted $\mathbf{L}^{2}$ spaces, J. Math. Anal. Appl., 419 (2014)
, 1214-1234.
doi: 10.1016/j.jmaa.2014.05.053.![]() ![]() ![]() |
|
J. -L. Lions,
Quelques méthodes de résolution des problémes aux limites non linéaires Dunod-Gauthier-Villars, Paris, 1969.
![]() ![]() |