\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations

  • * Corresponding author

    * Corresponding author 
Abstract Full Text(HTML) Related Papers Cited by
  • We study the upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations

    $\begin{matrix} i{{\partial }_{t}}u+\frac{1}{2}\Delta u=\lambda {{\left| u \right|}^{p-1}}u,\left( t,x \right)\in {{\mathbb{R}}^{+}}\text{ }\!\!\times\!\!\text{ }{{\mathbb{R}}^{n}}, \\ u\left( 0,x \right)={{u}_{0}}\left( x \right),x\in {{\mathbb{R}}^{n}}, \\ \end{matrix}$

    in space dimensions $n=1,2$ or $3$ , where $\lambda =\lambda _{1}+i\lambda _{2},$ $\lambda _{j}∈ \mathbb{R},$ $j=1,2,$ $\lambda _{2}<0$ and the subcritical order of nonlinearity $p=1+\frac{2}{n}-μ ,$ where $μ >0$ is small enough.

    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   G. P. Agrawal, Nonlinear Fiber Optics, 2nd edition, Academic Press, Inc. , 1995. doi: 10.1007/3-540-46629-0_9.
      J. Bergh and J. Löfström, Interpolation Spaces. An introduction 2nd edition, Springer-Verlag, Berlin-N. Y. , 1976. doi: 10.1007/978-3-642-66451-9.
      T. Cazenave, Semilinear Schrödinger Equations Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.
      J. Ginibre , T. Ozawa  and  G. Velo , On the existence of the wave operators for a class of nonlinear Schrödinger equations, Annales de l'I.H.P. Physique théorique, 60 (1994) , 211-239. 
      N. Hayashi , C. Li  and  P. I. Naumkin , Nonlinear Schrödinger systems in 2d with nondecaying final data, J. Differential Equations, 260 (2016) , 1472-1495.  doi: 10.1016/j.jde.2015.09.033.
      N. Hayashi, C. Li and P. I. Naumkin, Time decay for nonlinear dissipative Schrödinger equations in optical fields Advances in Mathematical Physics 2016 (2016), 7 pages. doi: 10.1155/2016/3702738.
      N. Hayashi, Li, Chunhua and P. I. Naumkin, Dissipative nonlinear Schrödinger equations with singular data, J. Appl. Computat. Math 5 (2016), 1000304.
      G. Jin , Y. Jin  and  C. Li , The initial value problem for nonlinear Schödinger equations with a dissipative nonlinearity in one space dimension, J. Evolution Equations, 16 (2016) , 983-995.  doi: 10.1007/s00028-016-0327-5.
      N. Kita  and  A. Shimomura , Asymptotic behavior of solutions to Schrödinger equations with a subcritical dissipative nonlinearity, J. Differential Equations, 242 (2007) , 192-210.  doi: 10.1016/j.jde.2007.07.003.
      N. Kita  and  A. Shimomura , Large time behavior of solutions to Schrödinger equations with a dissipative nonlinearity for arbitrarily large initial data, J. Math. Soc. Japan, 61 (2009) , 39-64. 
      C. Li  and  N. Hayashi , Critical nonlinear Schrödinger equations with data in homogeneous weighted $\mathbf{L}^{2}$ spaces, J. Math. Anal. Appl., 419 (2014) , 1214-1234.  doi: 10.1016/j.jmaa.2014.05.053.
      J. -L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires Dunod-Gauthier-Villars, Paris, 1969.
  • 加载中
SHARE

Article Metrics

HTML views(409) PDF downloads(195) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return