• Previous Article
    Existence of traveling waves for a class of nonlocal nonlinear equations with bell shaped kernels
  • CPAA Home
  • This Issue
  • Next Article
    Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations
November  2017, 16(6): 2105-2123. doi: 10.3934/cpaa.2017104

Multiple solutions for a fractional nonlinear Schrödinger equation with local potential

1. 

School of Science, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China

2. 

School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China

* Corresponding author

Received  December 2016 Revised  April 2017 Published  July 2017

Fund Project: The first author is partially supported by the Youth Science Foundation of Jiangxi Provincial Department of Education (GJJ14460), the NSFC Grant(61364015), the Foundation of the Jiangxi University of Science and Technology (NSFJ2015-G25). The second author is supported by NNSF of China (No. 11261052,11401477) and the Fundamental Research Funds for the Central Universities (No. DUT15RC(3)018, DUT17LK05).

Using penalization techniques and the Ljusternik-Schnirelmann theory, we establish the multiplicity and concentration of solutions for the following fractional Schrödinger equation
$\left\{ \begin{align} &{{\varepsilon }^{2\alpha }}{{\left( -\Delta \right)}^{a}}u+V\left( x \right)u=f\left( u \right),\ \ x\in {{\mathbb{R}}^{N}}, \\ &u\in {{H}^{a}}\left( {{\mathbb{R}}^{N}} \right),u>0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x\in {{\mathbb{R}}^{N}}, \\ \end{align} \right.$
where
$0<α<1$
,
$N>2α$
,
$\varepsilon>0$
is a small parameter,
$V$
satisfies the local condition, and
$f$
is superlinear and subcritical nonlinearity. We show that this equation has at least
$\text{cat}_{M_{δ}}(M)$
single spike solutions.
Citation: Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104
References:
[1]

C. O. AlvesG. M. Figueiredo and M. F. Furtado, Multiple solutions for a nonlinear Schrödinger equation with magnetic fields, Comm. Partial Differential Equations, 36 (2011), 1565-1586.  doi: 10.1080/03605302.2011.593013.  Google Scholar

[2]

A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge University Press, 2007. doi: 10.1017/CBO9780511618260.  Google Scholar

[3]

B. BarriosE. ColoradoR. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900.  doi: 10.1016/j.anihpc.2014.04.003.  Google Scholar

[4]

V. Benci and G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational. Mech. Anal., 114 (1991), 79-93.  doi: 10.1007/BF00375686.  Google Scholar

[5]

C. Bucur and M. Medina, A fractional elliptic problem in $\mathbb{R}^n$ with critical growth and convex nonlinearities, preprint, arXiv: 1609.01911. Google Scholar

[6]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20. Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[7]

J. ByeonO. Kwon and J. Seok, Nonlinear scalar field equations involving the fractional Laplacian, Nonlinearity, 30 (2017), 1659-1681.   Google Scholar

[8]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[9]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅱ: Existence, uniqueness and qualitative properties of solutions, Trans. Amer. Math. Soc., 367 (2015), 911-941.  doi: 10.1090/S0002-9947-2014-05906-0.  Google Scholar

[10]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[11]

G. Chen, Multiple semiclassical standing waves for fractional nonlinear Schrödinger equations, Nonlinearity, 28 (2015), 927-949.  doi: 10.1088/0951-7715/28/4/927.  Google Scholar

[12]

G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 2359-2376.  doi: 10.3934/cpaa.2014.13.2359.  Google Scholar

[13]

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential J. Math. Phys. 53 (2012), 043507. doi: 10.1063/1.3701574.  Google Scholar

[14]

S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differential Equations, 160 (2000), 118-138.  doi: 10.1006/jdeq.1999.3662.  Google Scholar

[15]

J. DávilaM. del PinoS. Dipierro and E. Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Anal. PDE, 8 (2015), 1165-1235.  doi: 10.2140/apde.2015.8.1165.  Google Scholar

[16]

J. DávilaM. Del Pino and J. C. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892.  doi: 10.1016/j.jde.2013.10.006.  Google Scholar

[17]

M. Del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar

[18]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[19]

S. Dipierro, M. Medina, I. Peral and E. Valdinoci, Bifurcation results for a fractional elliptic equation with critical exponent in $\mathbb{R}^n$ Manuscripta Math. (2016), doi: 10.1007/s00229-016-0878-3.  Google Scholar

[20]

S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $\mathbb{R}^n$ in Appunti. Edizioni della Normale Scuola Normale di Pisa (2017). arXiv: 1506.01748. doi: 10.1007/978-88-7642-601-8.  Google Scholar

[21]

M. M. Fall and E. Valdinoci, Uniqueness and nondegeneracy of positive solutions of $(Δ)^s u+u=u^p$ in $\mathbb{R}^N$ when $s$ is close to $1$, Comm. Math. Phys., 329 (2014), 383-404.  doi: 10.1007/s00220-014-1919-y.  Google Scholar

[22]

M. M. FallF. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 28 (2015), 1937-1961.  doi: 10.1088/0951-7715/28/6/1937.  Google Scholar

[23]

P. FelmerA. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar

[24]

G. M. Figueiredo and G. Siciliano, A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrdinger equation in $\mathbb{R}^N$ Nonlinear Differ. Equ. Appl. 23 (2016), 12. doi: 10.1007/s00030-016-0355-4.  Google Scholar

[25]

A. FiscellaR. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40 (2015), 235-53.  doi: 10.5186/aasfm.2015.4009.  Google Scholar

[26]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[27]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.  Google Scholar

[28]

N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 31-35.   Google Scholar

[29]

W. Liu, Multiple solutions for a fractional nonlinear Schrödinger equation with a general nonlinearity, prepared. Google Scholar

[30]

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbb{R}^N$ J. Math. Phys. 54 (2013), 031501. doi: 10.1063/1.4793990.  Google Scholar

[31]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29 (2013), 1091-1126.  doi: 10.4171/RMI/750.  Google Scholar

[32]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[33]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.   Google Scholar

[34]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar

[35]

X. Shang, J. Zhang and Y. Yang, On fractional Schödinger equation in $\mathbb{R}^N$ with critical growth J. Math. Phys. 54 (2013), 121502. doi: 10.1063/1.4835355.  Google Scholar

[36]

X. Shang and J. Zhang, Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 27 (2014), 187-207.  doi: 10.1088/0951-7715/27/2/187.  Google Scholar

[37]

X. Shang and J. Zhang, Concentrating solutions of nonlinear fractional Schrödinger equation with potentials, J. Differential Equations, 258 (2015), 1106-1128.  doi: 10.1016/j.jde.2014.10.012.  Google Scholar

show all references

References:
[1]

C. O. AlvesG. M. Figueiredo and M. F. Furtado, Multiple solutions for a nonlinear Schrödinger equation with magnetic fields, Comm. Partial Differential Equations, 36 (2011), 1565-1586.  doi: 10.1080/03605302.2011.593013.  Google Scholar

[2]

A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge University Press, 2007. doi: 10.1017/CBO9780511618260.  Google Scholar

[3]

B. BarriosE. ColoradoR. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900.  doi: 10.1016/j.anihpc.2014.04.003.  Google Scholar

[4]

V. Benci and G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational. Mech. Anal., 114 (1991), 79-93.  doi: 10.1007/BF00375686.  Google Scholar

[5]

C. Bucur and M. Medina, A fractional elliptic problem in $\mathbb{R}^n$ with critical growth and convex nonlinearities, preprint, arXiv: 1609.01911. Google Scholar

[6]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20. Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[7]

J. ByeonO. Kwon and J. Seok, Nonlinear scalar field equations involving the fractional Laplacian, Nonlinearity, 30 (2017), 1659-1681.   Google Scholar

[8]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[9]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅱ: Existence, uniqueness and qualitative properties of solutions, Trans. Amer. Math. Soc., 367 (2015), 911-941.  doi: 10.1090/S0002-9947-2014-05906-0.  Google Scholar

[10]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[11]

G. Chen, Multiple semiclassical standing waves for fractional nonlinear Schrödinger equations, Nonlinearity, 28 (2015), 927-949.  doi: 10.1088/0951-7715/28/4/927.  Google Scholar

[12]

G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 2359-2376.  doi: 10.3934/cpaa.2014.13.2359.  Google Scholar

[13]

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential J. Math. Phys. 53 (2012), 043507. doi: 10.1063/1.3701574.  Google Scholar

[14]

S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differential Equations, 160 (2000), 118-138.  doi: 10.1006/jdeq.1999.3662.  Google Scholar

[15]

J. DávilaM. del PinoS. Dipierro and E. Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Anal. PDE, 8 (2015), 1165-1235.  doi: 10.2140/apde.2015.8.1165.  Google Scholar

[16]

J. DávilaM. Del Pino and J. C. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892.  doi: 10.1016/j.jde.2013.10.006.  Google Scholar

[17]

M. Del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar

[18]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[19]

S. Dipierro, M. Medina, I. Peral and E. Valdinoci, Bifurcation results for a fractional elliptic equation with critical exponent in $\mathbb{R}^n$ Manuscripta Math. (2016), doi: 10.1007/s00229-016-0878-3.  Google Scholar

[20]

S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $\mathbb{R}^n$ in Appunti. Edizioni della Normale Scuola Normale di Pisa (2017). arXiv: 1506.01748. doi: 10.1007/978-88-7642-601-8.  Google Scholar

[21]

M. M. Fall and E. Valdinoci, Uniqueness and nondegeneracy of positive solutions of $(Δ)^s u+u=u^p$ in $\mathbb{R}^N$ when $s$ is close to $1$, Comm. Math. Phys., 329 (2014), 383-404.  doi: 10.1007/s00220-014-1919-y.  Google Scholar

[22]

M. M. FallF. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 28 (2015), 1937-1961.  doi: 10.1088/0951-7715/28/6/1937.  Google Scholar

[23]

P. FelmerA. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar

[24]

G. M. Figueiredo and G. Siciliano, A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrdinger equation in $\mathbb{R}^N$ Nonlinear Differ. Equ. Appl. 23 (2016), 12. doi: 10.1007/s00030-016-0355-4.  Google Scholar

[25]

A. FiscellaR. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40 (2015), 235-53.  doi: 10.5186/aasfm.2015.4009.  Google Scholar

[26]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[27]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.  Google Scholar

[28]

N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 31-35.   Google Scholar

[29]

W. Liu, Multiple solutions for a fractional nonlinear Schrödinger equation with a general nonlinearity, prepared. Google Scholar

[30]

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbb{R}^N$ J. Math. Phys. 54 (2013), 031501. doi: 10.1063/1.4793990.  Google Scholar

[31]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29 (2013), 1091-1126.  doi: 10.4171/RMI/750.  Google Scholar

[32]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[33]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.   Google Scholar

[34]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar

[35]

X. Shang, J. Zhang and Y. Yang, On fractional Schödinger equation in $\mathbb{R}^N$ with critical growth J. Math. Phys. 54 (2013), 121502. doi: 10.1063/1.4835355.  Google Scholar

[36]

X. Shang and J. Zhang, Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 27 (2014), 187-207.  doi: 10.1088/0951-7715/27/2/187.  Google Scholar

[37]

X. Shang and J. Zhang, Concentrating solutions of nonlinear fractional Schrödinger equation with potentials, J. Differential Equations, 258 (2015), 1106-1128.  doi: 10.1016/j.jde.2014.10.012.  Google Scholar

[1]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[2]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[3]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[4]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[9]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[10]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[11]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[15]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[16]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[17]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[18]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[19]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[20]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (79)
  • HTML views (54)
  • Cited by (0)

Other articles
by authors

[Back to Top]