• Previous Article
    Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations
  • CPAA Home
  • This Issue
  • Next Article
    Existence of traveling waves for a class of nonlocal nonlinear equations with bell shaped kernels
November  2017, 16(6): 2105-2123. doi: 10.3934/cpaa.2017104

Multiple solutions for a fractional nonlinear Schrödinger equation with local potential

1. 

School of Science, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China

2. 

School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China

* Corresponding author

Received  December 2016 Revised  April 2017 Published  July 2017

Fund Project: The first author is partially supported by the Youth Science Foundation of Jiangxi Provincial Department of Education (GJJ14460), the NSFC Grant(61364015), the Foundation of the Jiangxi University of Science and Technology (NSFJ2015-G25). The second author is supported by NNSF of China (No. 11261052,11401477) and the Fundamental Research Funds for the Central Universities (No. DUT15RC(3)018, DUT17LK05)

Using penalization techniques and the Ljusternik-Schnirelmann theory, we establish the multiplicity and concentration of solutions for the following fractional Schrödinger equation
$\left\{ \begin{align} &{{\varepsilon }^{2\alpha }}{{\left( -\Delta \right)}^{a}}u+V\left( x \right)u=f\left( u \right),\ \ x\in {{\mathbb{R}}^{N}}, \\ &u\in {{H}^{a}}\left( {{\mathbb{R}}^{N}} \right),u>0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x\in {{\mathbb{R}}^{N}}, \\ \end{align} \right.$
where
$0<α<1$
,
$N>2α$
,
$\varepsilon>0$
is a small parameter,
$V$
satisfies the local condition, and
$f$
is superlinear and subcritical nonlinearity. We show that this equation has at least
$\text{cat}_{M_{δ}}(M)$
single spike solutions.
Citation: Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104
References:
[1]

C. O. AlvesG. M. Figueiredo and M. F. Furtado, Multiple solutions for a nonlinear Schrödinger equation with magnetic fields, Comm. Partial Differential Equations, 36 (2011), 1565-1586. doi: 10.1080/03605302.2011.593013. Google Scholar

[2]

A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge University Press, 2007. doi: 10.1017/CBO9780511618260. Google Scholar

[3]

B. BarriosE. ColoradoR. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900. doi: 10.1016/j.anihpc.2014.04.003. Google Scholar

[4]

V. Benci and G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational. Mech. Anal., 114 (1991), 79-93. doi: 10.1007/BF00375686. Google Scholar

[5]

C. Bucur and M. Medina, A fractional elliptic problem in $\mathbb{R}^n$ with critical growth and convex nonlinearities, preprint, arXiv: 1609.01911.Google Scholar

[6]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20. Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. doi: 10.1007/978-3-319-28739-3. Google Scholar

[7]

J. ByeonO. Kwon and J. Seok, Nonlinear scalar field equations involving the fractional Laplacian, Nonlinearity, 30 (2017), 1659-1681. Google Scholar

[8]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53. doi: 10.1016/j.anihpc.2013.02.001. Google Scholar

[9]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅱ: Existence, uniqueness and qualitative properties of solutions, Trans. Amer. Math. Soc., 367 (2015), 911-941. doi: 10.1090/S0002-9947-2014-05906-0. Google Scholar

[10]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. Google Scholar

[11]

G. Chen, Multiple semiclassical standing waves for fractional nonlinear Schrödinger equations, Nonlinearity, 28 (2015), 927-949. doi: 10.1088/0951-7715/28/4/927. Google Scholar

[12]

G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 2359-2376. doi: 10.3934/cpaa.2014.13.2359. Google Scholar

[13]

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential J. Math. Phys. 53 (2012), 043507. doi: 10.1063/1.3701574. Google Scholar

[14]

S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differential Equations, 160 (2000), 118-138. doi: 10.1006/jdeq.1999.3662. Google Scholar

[15]

J. DávilaM. del PinoS. Dipierro and E. Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Anal. PDE, 8 (2015), 1165-1235. doi: 10.2140/apde.2015.8.1165. Google Scholar

[16]

J. DávilaM. Del Pino and J. C. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892. doi: 10.1016/j.jde.2013.10.006. Google Scholar

[17]

M. Del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137. doi: 10.1007/BF01189950. Google Scholar

[18]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[19]

S. Dipierro, M. Medina, I. Peral and E. Valdinoci, Bifurcation results for a fractional elliptic equation with critical exponent in $\mathbb{R}^n$ Manuscripta Math. (2016), doi: 10.1007/s00229-016-0878-3. Google Scholar

[20]

S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $\mathbb{R}^n$ in Appunti. Edizioni della Normale Scuola Normale di Pisa (2017). arXiv: 1506.01748. doi: 10.1007/978-88-7642-601-8. Google Scholar

[21]

M. M. Fall and E. Valdinoci, Uniqueness and nondegeneracy of positive solutions of $(Δ)^s u+u=u^p$ in $\mathbb{R}^N$ when $s$ is close to $1$, Comm. Math. Phys., 329 (2014), 383-404. doi: 10.1007/s00220-014-1919-y. Google Scholar

[22]

M. M. FallF. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 28 (2015), 1937-1961. doi: 10.1088/0951-7715/28/6/1937. Google Scholar

[23]

P. FelmerA. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262. doi: 10.1017/S0308210511000746. Google Scholar

[24]

G. M. Figueiredo and G. Siciliano, A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrdinger equation in $\mathbb{R}^N$ Nonlinear Differ. Equ. Appl. 23 (2016), 12. doi: 10.1007/s00030-016-0355-4. Google Scholar

[25]

A. FiscellaR. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40 (2015), 235-53. doi: 10.5186/aasfm.2015.4009. Google Scholar

[26]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013), 261-318. doi: 10.1007/s11511-013-0095-9. Google Scholar

[27]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726. doi: 10.1002/cpa.21591. Google Scholar

[28]

N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 31-35. Google Scholar

[29]

W. Liu, Multiple solutions for a fractional nonlinear Schrödinger equation with a general nonlinearity, prepared.Google Scholar

[30]

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbb{R}^N$ J. Math. Phys. 54 (2013), 031501. doi: 10.1063/1.4793990. Google Scholar

[31]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29 (2013), 1091-1126. doi: 10.4171/RMI/750. Google Scholar

[32]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032. Google Scholar

[33]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. Google Scholar

[34]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102. doi: 10.1090/S0002-9947-2014-05884-4. Google Scholar

[35]

X. Shang, J. Zhang and Y. Yang, On fractional Schödinger equation in $\mathbb{R}^N$ with critical growth J. Math. Phys. 54 (2013), 121502. doi: 10.1063/1.4835355. Google Scholar

[36]

X. Shang and J. Zhang, Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 27 (2014), 187-207. doi: 10.1088/0951-7715/27/2/187. Google Scholar

[37]

X. Shang and J. Zhang, Concentrating solutions of nonlinear fractional Schrödinger equation with potentials, J. Differential Equations, 258 (2015), 1106-1128. doi: 10.1016/j.jde.2014.10.012. Google Scholar

show all references

References:
[1]

C. O. AlvesG. M. Figueiredo and M. F. Furtado, Multiple solutions for a nonlinear Schrödinger equation with magnetic fields, Comm. Partial Differential Equations, 36 (2011), 1565-1586. doi: 10.1080/03605302.2011.593013. Google Scholar

[2]

A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge University Press, 2007. doi: 10.1017/CBO9780511618260. Google Scholar

[3]

B. BarriosE. ColoradoR. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900. doi: 10.1016/j.anihpc.2014.04.003. Google Scholar

[4]

V. Benci and G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational. Mech. Anal., 114 (1991), 79-93. doi: 10.1007/BF00375686. Google Scholar

[5]

C. Bucur and M. Medina, A fractional elliptic problem in $\mathbb{R}^n$ with critical growth and convex nonlinearities, preprint, arXiv: 1609.01911.Google Scholar

[6]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20. Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. doi: 10.1007/978-3-319-28739-3. Google Scholar

[7]

J. ByeonO. Kwon and J. Seok, Nonlinear scalar field equations involving the fractional Laplacian, Nonlinearity, 30 (2017), 1659-1681. Google Scholar

[8]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53. doi: 10.1016/j.anihpc.2013.02.001. Google Scholar

[9]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅱ: Existence, uniqueness and qualitative properties of solutions, Trans. Amer. Math. Soc., 367 (2015), 911-941. doi: 10.1090/S0002-9947-2014-05906-0. Google Scholar

[10]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. Google Scholar

[11]

G. Chen, Multiple semiclassical standing waves for fractional nonlinear Schrödinger equations, Nonlinearity, 28 (2015), 927-949. doi: 10.1088/0951-7715/28/4/927. Google Scholar

[12]

G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 2359-2376. doi: 10.3934/cpaa.2014.13.2359. Google Scholar

[13]

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential J. Math. Phys. 53 (2012), 043507. doi: 10.1063/1.3701574. Google Scholar

[14]

S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differential Equations, 160 (2000), 118-138. doi: 10.1006/jdeq.1999.3662. Google Scholar

[15]

J. DávilaM. del PinoS. Dipierro and E. Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Anal. PDE, 8 (2015), 1165-1235. doi: 10.2140/apde.2015.8.1165. Google Scholar

[16]

J. DávilaM. Del Pino and J. C. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892. doi: 10.1016/j.jde.2013.10.006. Google Scholar

[17]

M. Del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137. doi: 10.1007/BF01189950. Google Scholar

[18]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[19]

S. Dipierro, M. Medina, I. Peral and E. Valdinoci, Bifurcation results for a fractional elliptic equation with critical exponent in $\mathbb{R}^n$ Manuscripta Math. (2016), doi: 10.1007/s00229-016-0878-3. Google Scholar

[20]

S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $\mathbb{R}^n$ in Appunti. Edizioni della Normale Scuola Normale di Pisa (2017). arXiv: 1506.01748. doi: 10.1007/978-88-7642-601-8. Google Scholar

[21]

M. M. Fall and E. Valdinoci, Uniqueness and nondegeneracy of positive solutions of $(Δ)^s u+u=u^p$ in $\mathbb{R}^N$ when $s$ is close to $1$, Comm. Math. Phys., 329 (2014), 383-404. doi: 10.1007/s00220-014-1919-y. Google Scholar

[22]

M. M. FallF. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 28 (2015), 1937-1961. doi: 10.1088/0951-7715/28/6/1937. Google Scholar

[23]

P. FelmerA. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262. doi: 10.1017/S0308210511000746. Google Scholar

[24]

G. M. Figueiredo and G. Siciliano, A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrdinger equation in $\mathbb{R}^N$ Nonlinear Differ. Equ. Appl. 23 (2016), 12. doi: 10.1007/s00030-016-0355-4. Google Scholar

[25]

A. FiscellaR. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40 (2015), 235-53. doi: 10.5186/aasfm.2015.4009. Google Scholar

[26]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013), 261-318. doi: 10.1007/s11511-013-0095-9. Google Scholar

[27]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726. doi: 10.1002/cpa.21591. Google Scholar

[28]

N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 31-35. Google Scholar

[29]

W. Liu, Multiple solutions for a fractional nonlinear Schrödinger equation with a general nonlinearity, prepared.Google Scholar

[30]

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbb{R}^N$ J. Math. Phys. 54 (2013), 031501. doi: 10.1063/1.4793990. Google Scholar

[31]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29 (2013), 1091-1126. doi: 10.4171/RMI/750. Google Scholar

[32]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032. Google Scholar

[33]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. Google Scholar

[34]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102. doi: 10.1090/S0002-9947-2014-05884-4. Google Scholar

[35]

X. Shang, J. Zhang and Y. Yang, On fractional Schödinger equation in $\mathbb{R}^N$ with critical growth J. Math. Phys. 54 (2013), 121502. doi: 10.1063/1.4835355. Google Scholar

[36]

X. Shang and J. Zhang, Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 27 (2014), 187-207. doi: 10.1088/0951-7715/27/2/187. Google Scholar

[37]

X. Shang and J. Zhang, Concentrating solutions of nonlinear fractional Schrödinger equation with potentials, J. Differential Equations, 258 (2015), 1106-1128. doi: 10.1016/j.jde.2014.10.012. Google Scholar

[1]

Walter Dambrosio, Duccio Papini. Multiple homoclinic solutions for a one-dimensional Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1025-1038. doi: 10.3934/dcdss.2016040

[2]

Shuangjie Peng, Huirong Pi. Spike vector solutions for some coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2205-2227. doi: 10.3934/dcds.2016.36.2205

[3]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[4]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[5]

Weichung Wang, Tsung-Fang Wu, Chien-Hsiang Liu. On the multiple spike solutions for singularly perturbed elliptic systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 237-258. doi: 10.3934/dcdsb.2013.18.237

[6]

Changfeng Gui, Zhenbu Zhang. Spike solutions to a nonlocal differential equation. Communications on Pure & Applied Analysis, 2006, 5 (1) : 85-95. doi: 10.3934/cpaa.2006.5.85

[7]

Weiming Liu, Lu Gan. Multi-bump positive solutions of a fractional nonlinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2016, 15 (2) : 413-428. doi: 10.3934/cpaa.2016.15.413

[8]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[9]

César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535

[10]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[11]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[12]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094

[13]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[14]

Miao Du, Lixin Tian. Infinitely many solutions of the nonlinear fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3407-3428. doi: 10.3934/dcdsb.2016104

[15]

Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071

[16]

Gerd Grubb. Limited regularity of solutions to fractional heat and Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3609-3634. doi: 10.3934/dcds.2019148

[17]

John Baxley, Mary E. Cunningham, M. Kathryn McKinnon. Higher order boundary value problems with multiple solutions: examples and techniques. Conference Publications, 2005, 2005 (Special) : 84-90. doi: 10.3934/proc.2005.2005.84

[18]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[19]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

[20]

Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (17)
  • HTML views (14)
  • Cited by (0)

Other articles
by authors

[Back to Top]