In this article we are concerned with the existence of traveling wave solutions of a general class of nonlocal wave equations: $~u_{tt}-a^{2}u_{xx}=(β * u^{p})_{xx}$, $~p>1$. Members of the class arise as mathematical models for the propagation of waves in a wide variety of situations. We assume that the kernel $β $ is a bell-shaped function satisfying some mild differentiability and growth conditions. Taking advantage of growth properties of bell-shaped functions, we give a simple proof for the existence of bell-shaped traveling wave solutions.
Citation: |
C. Babaoglu
, H. A. Erbay
and A. Erkip
, Global existence and blow-up of solutions for a general class of doubly dispersive nonlocal nonlinear wave equations, Nonlinear Anal., 77 (2013)
, 82-93.
doi: 10.1016/j.na.2012.09.001.![]() ![]() ![]() |
|
N. Duruk
, H. A. Erbay
and A. Erkip
, Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity, Nonlinearity, 23 (2010)
, 107-118.
doi: 10.1088/0951-7715/23/1/006.![]() ![]() ![]() |
|
J. M. English
and R. L. Pego
, On the solitarywave pulse in a chain of beads, Proc. AMS, 133, 23 (2005)
, 1763-1768.
doi: 10.1090/S0002-9939-05-07851-2.![]() ![]() ![]() |
|
H. A. Erbay
, S. Erbay
and A. Erkip
, Existence and stability of traveling waves for a class of nonlocal nonlinear equations, J. Mathematical Analysis and Applications, 425 (2015)
, 307-336.
doi: 10.1016/j.jmaa.2014.12.039.![]() ![]() ![]() |
|
G. Friesecke
and J. A. D. Wattis
, Existence theorem for solitary waves on lattices, Commun. Math. Phys., 161 (1994)
, 391-418.
![]() ![]() |
|
E. H. Lieb and M. Loss, Analysis Volume 14, Graduate Studies in Mathematics, AMS, 2001.
doi: 10.1090/gsm/014.![]() ![]() ![]() |
|
P. L. Lions
, The concentration-compactness principle in the calculus of variations. The locally compact case, Part 1, Ann. Inst. Henri Poincaré, 1 (1984)
, 109-145.
![]() ![]() |
|
A. Stefanov
and P. Kevrekidis
, On the existence of solitary traveling waves for generalized Hertzian chains, Journal of Nonlinear Science, 22 (2012)
, 327-349.
doi: 10.1007/s00332-011-9119-9.![]() ![]() ![]() |
|
A. Stefanov
and P. Kevrekidis
, Traveling waves for monomer chains with precompression, Nonlinearity, 26 (2013)
, 539-349.
doi: 10.1088/0951-7715/26/2/539.![]() ![]() ![]() |
|
J. Smoller, Shock Waves and Reaction-Diffusion Equations 2nd edition, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-0873-0.![]() ![]() ![]() |
|
C. Wolf
, A mathematical model for the propagation of a hantavirus in structured populations, Discrete Continuous Dynam. Systems-B, 4 (2004)
, 1065-1089.
doi: 10.3934/dcdsb.2004.4.1065.![]() ![]() ![]() |