• Previous Article
    Existence of traveling waves for a class of nonlocal nonlinear equations with bell shaped kernels
  • CPAA Home
  • This Issue
  • Next Article
    Multiple positive solutions for Kirchhoff type problems involving concave-convex nonlinearities
November  2017, 16(6): 2133-2156. doi: 10.3934/cpaa.2017106

A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity

Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan

Received  January 2017 Revised  July 2017 Published  July 2017

Chen, Kung and Morita [5] studied a variational problem corresponding to the FitzHugh-Nagumo type reaction-diffusion system (FHN type RD system), and they proved the existence of a heteroclinic solution to the system.

Motivated by [5], we consider a variational problem corresponding to FHN type RD system which involves heterogeneity. We prove the existence of a heteroclinic solution to the problem under certain conditions on the heterogeneity. Moreover, we give some information about the location of the transitions.

Citation: Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106
References:
[1]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differencial Equations Springer, New York, 2010.

[2]

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Differential Equations, 3 (2006), 103-202. doi: 10.1016/S1874-5725(06)80006-4.

[3]

C. N. Chen and Y. Choi, Standing pulse solutions to FitzHugh-Nagumo equations, Arch. Ration. Mech. Anal., 206 (2012), 741-777. doi: 10.1007/s00205-012-0542-3.

[4]

C. N. Chen, P. van Heijster, Y. Nishiura and T. Teramoto, Localized patterns in a three-component FizHugh-Nagumo model revisited via an action functional J. Dyn. Diff. Equat. (2016), doi:10.1007/s10884-016-9557-z.

[5]

C. N. ChenS. Y. Kung and Y. Morita, Planar Standing wavefronts in the FitzHugh-Nagumo equations, SIAM J. Math. Anal., 46 (2014), 657-690. doi: 10.1137/130907793.

[6]

E. N. Dancer and S. Yan, A minimization problem associated with elliptic systems of FitzHugh-Nagumo type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 237-253. doi: 10.1016/S0294-1449(03)00032-5.

[7]

S. Ei and H. Ikeda, Front dynamics in heterogeneous diffusive media, Physica D, 239 (2010), 1637-1649. doi: 10.1016/j.physd.2010.04.008.

[8]

T. Kajiwara and K. Kurata, On a variational problem arising from the three-component FitzHugh-Nagumo type reaction-diffusion systems, Tokyo J. Math. accepted, 2016.

[9]

Y. NishiuraT. Teramoto and X. Yuan, Heterogeneity-introduced spot dynamics for a three-component reaction-diffusion system, Comm. Pure Appl. Anal., 11 (2012), 307-338. doi: 10.3934/cpaa.2012.11.307.

[10]

Y. Oshita, On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh-Nagumo equations in higher dimensions, J. Differential Equations, 188 (2003), 110-134. doi: 10.1016/S0022-0396(02)00084-0.

[11]

C. Sourdis, The heteroclinic connection problem for general double-well potentials, Mediterr. J. Math., 13 (2016), 4693-4710. doi: 10.1007/s00009-016-0770-0.

show all references

References:
[1]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differencial Equations Springer, New York, 2010.

[2]

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Differential Equations, 3 (2006), 103-202. doi: 10.1016/S1874-5725(06)80006-4.

[3]

C. N. Chen and Y. Choi, Standing pulse solutions to FitzHugh-Nagumo equations, Arch. Ration. Mech. Anal., 206 (2012), 741-777. doi: 10.1007/s00205-012-0542-3.

[4]

C. N. Chen, P. van Heijster, Y. Nishiura and T. Teramoto, Localized patterns in a three-component FizHugh-Nagumo model revisited via an action functional J. Dyn. Diff. Equat. (2016), doi:10.1007/s10884-016-9557-z.

[5]

C. N. ChenS. Y. Kung and Y. Morita, Planar Standing wavefronts in the FitzHugh-Nagumo equations, SIAM J. Math. Anal., 46 (2014), 657-690. doi: 10.1137/130907793.

[6]

E. N. Dancer and S. Yan, A minimization problem associated with elliptic systems of FitzHugh-Nagumo type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 237-253. doi: 10.1016/S0294-1449(03)00032-5.

[7]

S. Ei and H. Ikeda, Front dynamics in heterogeneous diffusive media, Physica D, 239 (2010), 1637-1649. doi: 10.1016/j.physd.2010.04.008.

[8]

T. Kajiwara and K. Kurata, On a variational problem arising from the three-component FitzHugh-Nagumo type reaction-diffusion systems, Tokyo J. Math. accepted, 2016.

[9]

Y. NishiuraT. Teramoto and X. Yuan, Heterogeneity-introduced spot dynamics for a three-component reaction-diffusion system, Comm. Pure Appl. Anal., 11 (2012), 307-338. doi: 10.3934/cpaa.2012.11.307.

[10]

Y. Oshita, On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh-Nagumo equations in higher dimensions, J. Differential Equations, 188 (2003), 110-134. doi: 10.1016/S0022-0396(02)00084-0.

[11]

C. Sourdis, The heteroclinic connection problem for general double-well potentials, Mediterr. J. Math., 13 (2016), 4693-4710. doi: 10.1007/s00009-016-0770-0.

[1]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

[2]

Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101

[3]

Vyacheslav Maksimov. Some problems of guaranteed control of the Schlögl and FitzHugh-Nagumo systems. Evolution Equations & Control Theory, 2017, 6 (4) : 559-586. doi: 10.3934/eect.2017028

[4]

Anhui Gu, Bixiang Wang. Asymptotic behavior of random fitzhugh-nagumo systems driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1689-1720. doi: 10.3934/dcdsb.2018072

[5]

Arnold Dikansky. Fitzhugh-Nagumo equations in a nonhomogeneous medium. Conference Publications, 2005, 2005 (Special) : 216-224. doi: 10.3934/proc.2005.2005.216

[6]

Anna Cattani. FitzHugh-Nagumo equations with generalized diffusive coupling. Mathematical Biosciences & Engineering, 2014, 11 (2) : 203-215. doi: 10.3934/mbe.2014.11.203

[7]

Abiti Adili, Bixiang Wang. Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 643-666. doi: 10.3934/dcdsb.2013.18.643

[8]

Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1

[9]

John Guckenheimer, Christian Kuehn. Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 851-872. doi: 10.3934/dcdss.2009.2.851

[10]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[11]

Yiqiu Mao. Dynamic transitions of the Fitzhugh-Nagumo equations on a finite domain. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3935-3947. doi: 10.3934/dcdsb.2018118

[12]

Francesco Cordoni, Luca Di Persio. Optimal control for the stochastic FitzHugh-Nagumo model with recovery variable. Evolution Equations & Control Theory, 2018, 7 (4) : 571-585. doi: 10.3934/eect.2018027

[13]

Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457

[14]

Yangrong Li, Jinyan Yin. A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1203-1223. doi: 10.3934/dcdsb.2016.21.1203

[15]

Bao Quoc Tang. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 441-466. doi: 10.3934/dcds.2015.35.441

[16]

Matthieu Alfaro, Hiroshi Matano. On the validity of formal asymptotic expansions in Allen-Cahn equation and FitzHugh-Nagumo system with generic initial data. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1639-1649. doi: 10.3934/dcdsb.2012.17.1639

[17]

Wenqiang Zhao. Smoothing dynamics of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ driven by multiplicative noises. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-22. doi: 10.3934/dcdsb.2018251

[18]

Willem M. Schouten-Straatman, Hermen Jan Hupkes. Nonlinear stability of pulse solutions for the discrete FitzHugh-Nagumo equation with infinite-range interactions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5017-5083. doi: 10.3934/dcds.2019205

[19]

C.B. Muratov. A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 867-892. doi: 10.3934/dcdsb.2004.4.867

[20]

Manh Hong Duong, Hoang Minh Tran. On the fundamental solution and a variational formulation for a degenerate diffusion of Kolmogorov type. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3407-3438. doi: 10.3934/dcds.2018146

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (7)
  • Cited by (0)

Other articles
by authors

[Back to Top]