Chen, Kung and Morita [
Motivated by [
Citation: |
H. Brezis,
Functional Analysis, Sobolev Spaces and Partial Differencial Equations Springer, New York, 2010.
![]() ![]() |
|
D. Bonheure
and L. Sanchez
, Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Differential Equations, 3 (2006)
, 103-202.
doi: 10.1016/S1874-5725(06)80006-4.![]() ![]() ![]() |
|
C. N. Chen
and Y. Choi
, Standing pulse solutions to FitzHugh-Nagumo equations, Arch. Ration. Mech. Anal., 206 (2012)
, 741-777.
doi: 10.1007/s00205-012-0542-3.![]() ![]() ![]() |
|
C. N. Chen, P. van Heijster, Y. Nishiura and T. Teramoto, Localized patterns in a three-component FizHugh-Nagumo model revisited via an action functional J. Dyn. Diff. Equat. (2016), doi:10.1007/s10884-016-9557-z.
![]() |
|
C. N. Chen
, S. Y. Kung
and Y. Morita
, Planar Standing wavefronts in the FitzHugh-Nagumo equations, SIAM J. Math. Anal., 46 (2014)
, 657-690.
doi: 10.1137/130907793.![]() ![]() ![]() |
|
E. N. Dancer
and S. Yan
, A minimization problem associated with elliptic systems of FitzHugh-Nagumo type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004)
, 237-253.
doi: 10.1016/S0294-1449(03)00032-5.![]() ![]() ![]() |
|
S. Ei
and H. Ikeda
, Front dynamics in heterogeneous diffusive media, Physica D, 239 (2010)
, 1637-1649.
doi: 10.1016/j.physd.2010.04.008.![]() ![]() ![]() |
|
T. Kajiwara and K. Kurata, On a variational problem arising from the three-component FitzHugh-Nagumo type reaction-diffusion systems,
Tokyo J. Math. accepted, 2016.
![]() |
|
Y. Nishiura
, T. Teramoto
and X. Yuan
, Heterogeneity-introduced spot dynamics for a three-component reaction-diffusion system, Comm. Pure Appl. Anal., 11 (2012)
, 307-338.
doi: 10.3934/cpaa.2012.11.307.![]() ![]() ![]() |
|
Y. Oshita
, On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh-Nagumo equations in higher dimensions, J. Differential Equations, 188 (2003)
, 110-134.
doi: 10.1016/S0022-0396(02)00084-0.![]() ![]() ![]() |
|
C. Sourdis
, The heteroclinic connection problem for general double-well potentials, Mediterr. J. Math., 13 (2016)
, 4693-4710.
doi: 10.1007/s00009-016-0770-0.![]() ![]() ![]() |