• Previous Article
    Multiple positive solutions for Kirchhoff type problems involving concave-convex nonlinearities
  • CPAA Home
  • This Issue
  • Next Article
    Existence of traveling waves for a class of nonlocal nonlinear equations with bell shaped kernels
November  2017, 16(6): 2133-2156. doi: 10.3934/cpaa.2017106

A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity

Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan

Received  January 2017 Revised  July 2017 Published  July 2017

Chen, Kung and Morita [5] studied a variational problem corresponding to the FitzHugh-Nagumo type reaction-diffusion system (FHN type RD system), and they proved the existence of a heteroclinic solution to the system.

Motivated by [5], we consider a variational problem corresponding to FHN type RD system which involves heterogeneity. We prove the existence of a heteroclinic solution to the problem under certain conditions on the heterogeneity. Moreover, we give some information about the location of the transitions.

Citation: Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106
References:
[1]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differencial Equations Springer, New York, 2010.  Google Scholar

[2]

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Differential Equations, 3 (2006), 103-202.  doi: 10.1016/S1874-5725(06)80006-4.  Google Scholar

[3]

C. N. Chen and Y. Choi, Standing pulse solutions to FitzHugh-Nagumo equations, Arch. Ration. Mech. Anal., 206 (2012), 741-777.  doi: 10.1007/s00205-012-0542-3.  Google Scholar

[4]

C. N. Chen, P. van Heijster, Y. Nishiura and T. Teramoto, Localized patterns in a three-component FizHugh-Nagumo model revisited via an action functional J. Dyn. Diff. Equat. (2016), doi:10.1007/s10884-016-9557-z. Google Scholar

[5]

C. N. ChenS. Y. Kung and Y. Morita, Planar Standing wavefronts in the FitzHugh-Nagumo equations, SIAM J. Math. Anal., 46 (2014), 657-690.  doi: 10.1137/130907793.  Google Scholar

[6]

E. N. Dancer and S. Yan, A minimization problem associated with elliptic systems of FitzHugh-Nagumo type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 237-253.  doi: 10.1016/S0294-1449(03)00032-5.  Google Scholar

[7]

S. Ei and H. Ikeda, Front dynamics in heterogeneous diffusive media, Physica D, 239 (2010), 1637-1649.  doi: 10.1016/j.physd.2010.04.008.  Google Scholar

[8]

T. Kajiwara and K. Kurata, On a variational problem arising from the three-component FitzHugh-Nagumo type reaction-diffusion systems, Tokyo J. Math. accepted, 2016. Google Scholar

[9]

Y. NishiuraT. Teramoto and X. Yuan, Heterogeneity-introduced spot dynamics for a three-component reaction-diffusion system, Comm. Pure Appl. Anal., 11 (2012), 307-338.  doi: 10.3934/cpaa.2012.11.307.  Google Scholar

[10]

Y. Oshita, On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh-Nagumo equations in higher dimensions, J. Differential Equations, 188 (2003), 110-134.  doi: 10.1016/S0022-0396(02)00084-0.  Google Scholar

[11]

C. Sourdis, The heteroclinic connection problem for general double-well potentials, Mediterr. J. Math., 13 (2016), 4693-4710.  doi: 10.1007/s00009-016-0770-0.  Google Scholar

show all references

References:
[1]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differencial Equations Springer, New York, 2010.  Google Scholar

[2]

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Differential Equations, 3 (2006), 103-202.  doi: 10.1016/S1874-5725(06)80006-4.  Google Scholar

[3]

C. N. Chen and Y. Choi, Standing pulse solutions to FitzHugh-Nagumo equations, Arch. Ration. Mech. Anal., 206 (2012), 741-777.  doi: 10.1007/s00205-012-0542-3.  Google Scholar

[4]

C. N. Chen, P. van Heijster, Y. Nishiura and T. Teramoto, Localized patterns in a three-component FizHugh-Nagumo model revisited via an action functional J. Dyn. Diff. Equat. (2016), doi:10.1007/s10884-016-9557-z. Google Scholar

[5]

C. N. ChenS. Y. Kung and Y. Morita, Planar Standing wavefronts in the FitzHugh-Nagumo equations, SIAM J. Math. Anal., 46 (2014), 657-690.  doi: 10.1137/130907793.  Google Scholar

[6]

E. N. Dancer and S. Yan, A minimization problem associated with elliptic systems of FitzHugh-Nagumo type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 237-253.  doi: 10.1016/S0294-1449(03)00032-5.  Google Scholar

[7]

S. Ei and H. Ikeda, Front dynamics in heterogeneous diffusive media, Physica D, 239 (2010), 1637-1649.  doi: 10.1016/j.physd.2010.04.008.  Google Scholar

[8]

T. Kajiwara and K. Kurata, On a variational problem arising from the three-component FitzHugh-Nagumo type reaction-diffusion systems, Tokyo J. Math. accepted, 2016. Google Scholar

[9]

Y. NishiuraT. Teramoto and X. Yuan, Heterogeneity-introduced spot dynamics for a three-component reaction-diffusion system, Comm. Pure Appl. Anal., 11 (2012), 307-338.  doi: 10.3934/cpaa.2012.11.307.  Google Scholar

[10]

Y. Oshita, On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh-Nagumo equations in higher dimensions, J. Differential Equations, 188 (2003), 110-134.  doi: 10.1016/S0022-0396(02)00084-0.  Google Scholar

[11]

C. Sourdis, The heteroclinic connection problem for general double-well potentials, Mediterr. J. Math., 13 (2016), 4693-4710.  doi: 10.1007/s00009-016-0770-0.  Google Scholar

[1]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[8]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[9]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[10]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[14]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[17]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[18]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[19]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[20]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (83)
  • HTML views (49)
  • Cited by (0)

Other articles
by authors

[Back to Top]