We prove that the initial-value problem for the fractional heat equation admits an entire solution provided that the (possibly unbounded) initial datum has a conveniently moderate growth at infinity. Under the same growth condition we also prove that the solution is unique. The result does not require any sign assumption, thus complementing the Widder's type theorem of Barrios et al.[
Citation: |
B. Barrios
, I. Peral
, F. Soria
and E. Valdinoci
, A Widder's type theorem for the heat equation with non-local diffusion, Arch. Rational Mech. Anal., 213 (2014)
, 629-650.
doi: 10.1007/s00205-014-0733-1.![]() ![]() ![]() |
|
R. M. Blumenthal
and R. H. Getoor
, Some theorems on stable processes, Trans. Amer. Math. Soc., 95 (1960)
, 263-273.
doi: 10.2307/1993291.![]() ![]() ![]() |
|
K. Bogdan
, T. Grzywny
and M. Ryznar
, Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Prob., 38 (2010)
, 1901-1923.
doi: 10.1214/10-AOP532.![]() ![]() ![]() |
|
C. Bucur and E. Valdinoci,
Non-local Diffusion and Applications Springer, New York (2016).
doi: 10.1007/978-3-319-28739-3.![]() ![]() ![]() |
|
X. Cabré
and Y. Sire
, Nonlinear equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 367 (2014)
, 911-941.
doi: 10.1016/j.anihpc.2013.02.001.![]() ![]() ![]() |
|
X. Cabré
and Y. Sire
, Nonlinear equations for fractional Laplacians Ⅱ: Existence, uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc., 31 (2014)
, 23-53.
doi: 10.1016/j.anihpc.2013.02.001.![]() ![]() ![]() |
|
L. Caffarelli, Non-local diffusions, drifts and games in Nonlinear partial differential equations (H. Holden and K. H. Karlsen eds. ), Springer, New York (2012).
doi: 10.1007/978-3-642-25361-4_3.![]() ![]() ![]() |
|
L. Caffarelli
and A. Figalli
, Regularity of solutions to the parabolic fractional obstacle problem, J. Reine Angew. Math., 680 (2013)
, 191-233.
doi: 10.1515/crelle.2012.036.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007)
, 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
|
Z. Q. Chen
, P. Kim
and R. Song
, Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc., 12 (2010)
, 1307-1329.
doi: 10.4171/JEMS/231.![]() ![]() ![]() |
|
E. Di Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012)
, 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
|
L. C. Evans,
Partial Differential Equations 2nd edition,
Graduate Studies in Mathematics 19 American Mathematical Society, Providence, Rhode Island, 2010.
doi: 10.1090/gsm/019.![]() ![]() ![]() |
|
X. Fernández-Real
and X. Ros-Oton
, Boundary regularity for the fractional heat equation, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math., 110 (2016)
, 49-64.
doi: 10.1007/s13398-015-0218-6.![]() ![]() ![]() |
|
A. Greco
, Convex functions over the whole space locally satisfying fractional equations, Minimax Theory Appl., 2 (2017)
, 51-68.
![]() ![]() |
|
A. Greco
and R. Servadei
, Hopf's lemma and constrained radial symmetry for the fractional Laplacian, Math. Res. Lett., 23 (2016)
, 863-885.
doi: 10.4310/MRL.2016.v23.n3.a14.![]() ![]() ![]() |
|
A. Iannizzotto
, S. Mosconi
and M. Squassina
, $H^s$ versus $C^0$-weighted minimizers, Nonlinear Differ. Equ. Appl., 22 (2015)
, 477-497.
doi: 10.1007/s00030-014-0292-z.![]() ![]() ![]() |
|
K. Ishige
, T. Kawakami
and H. Michihisa
, Asymptotic expansions of solutions of fractional diffusion equations, SIAM J. Math. Anal., 49 (2017)
, 2167-2190.
doi: 10.1137/16M1101428.![]() ![]() ![]() |
|
K. Ishige
and P. Salani
, A note on parabolic power concavity, Kodai Math. J., 37 (2014)
, 668-679.
doi: 10.2996/kmj/1414674615.![]() ![]() ![]() |
|
F. John,
Partial Differential Equations fourth edition, Springer, New York (1982).
doi: 10.1007/978-1-4684-9333-7.![]() ![]() ![]() |
|
T. Kulczycki
, On concavity of solution of Dirichlet problem for the equation $(-Δ)^{1/2 \,} \varphi = 1$ in a convex planar region, J. Eur. Math. Soc., 19 (2017)
, 1361-1420.
doi: 10.4171/JEMS/695.![]() ![]() ![]() |
|
T. Kulczycki
and M. Ryznar
, Gradient estimates of harmonic functions and transition densities for Lévy processes, Trans. Amer. Math. Soc., 368 (2016)
, 281-318.
doi: 10.1090/tran/6333.![]() ![]() ![]() |
|
R. Musina
and A. Nazarov
, On fractional Laplacians, Comm. Partial Differential Equations, 39 (2014)
, 1780-1790.
doi: 10.1080/03605302.2013.864304.![]() ![]() ![]() |
|
G. Pólya
, On the zeros of an integral function represented by Fourier's integral, J. London Math. Soc., 1 (1926)
, 98-99.
doi: 10.1112/jlms/s1-1.1.12.![]() ![]() ![]() |
|
M. H. Protter and H. F. Weinberger,
Maximum Principles in Differential Equations Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-5282-5.![]() ![]() ![]() |
|
X. Ros-Oton
and J. Serra
, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014)
, 275-302.
doi: 10.1016/j.matpur.2013.06.003.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012)
, 887-898.
doi: 10.1016/j.jmaa.2011.12.032.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sec. A, 144 (2014)
, 831-855.
doi: 10.1017/S0308210512001783.![]() ![]() ![]() |
|
L. Vázquez
, J. J. Trujillo
and M. P. Velasco
, Fractional heat equation and the second law of thermodynamics, Fract. Calc. Appl. Anal., 14 (2011)
, 334-342.
doi: 10.2478/s13540-011-0021-9.![]() ![]() ![]() |
|
D. V. Widder
, Positive temperatures on an infinite rod, Trans. Amer. Math. Soc., 55 (1944)
, 85-95.
doi: 10.2307/1990141.![]() ![]() ![]() |
|
Fractional heat equation: https://www.ma.utexas.edu/mediawiki/index.php/Fractional_heat-equation
![]() |