November  2017, 16(6): 2201-2226. doi: 10.3934/cpaa.2017109

Existence and convexity of solutions of the fractional heat equation

1. 

Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Via Ospedale 72,09124 Cagliari, Italy

2. 

Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Viale L. Merello 92,09123 Cagliari, Italy

* Corresponding author

Received  January 2017 Revised  May 2017 Published  July 2017

We prove that the initial-value problem for the fractional heat equation admits an entire solution provided that the (possibly unbounded) initial datum has a conveniently moderate growth at infinity. Under the same growth condition we also prove that the solution is unique. The result does not require any sign assumption, thus complementing the Widder's type theorem of Barrios et al.[1] for positive solutions. Finally, we show that the fractional heat flow preserves convexity of the initial datum. Incidentally, several properties of stationary convex solutions are established.

Citation: Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109
References:
[1]

B. BarriosI. PeralF. Soria and E. Valdinoci, A Widder's type theorem for the heat equation with non-local diffusion, Arch. Rational Mech. Anal., 213 (2014), 629-650.  doi: 10.1007/s00205-014-0733-1.  Google Scholar

[2]

R. M. Blumenthal and R. H. Getoor, Some theorems on stable processes, Trans. Amer. Math. Soc., 95 (1960), 263-273.  doi: 10.2307/1993291.  Google Scholar

[3]

K. BogdanT. Grzywny and M. Ryznar, Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Prob., 38 (2010), 1901-1923.  doi: 10.1214/10-AOP532.  Google Scholar

[4]

C. Bucur and E. Valdinoci, Non-local Diffusion and Applications Springer, New York (2016). doi: 10.1007/978-3-319-28739-3.  Google Scholar

[5]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 367 (2014), 911-941.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[6]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅱ: Existence, uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc., 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[7]

L. Caffarelli, Non-local diffusions, drifts and games in Nonlinear partial differential equations (H. Holden and K. H. Karlsen eds. ), Springer, New York (2012). doi: 10.1007/978-3-642-25361-4_3.  Google Scholar

[8]

L. Caffarelli and A. Figalli, Regularity of solutions to the parabolic fractional obstacle problem, J. Reine Angew. Math., 680 (2013), 191-233.  doi: 10.1515/crelle.2012.036.  Google Scholar

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[10]

Z. Q. ChenP. Kim and R. Song, Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1307-1329.  doi: 10.4171/JEMS/231.  Google Scholar

[11]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[12]

L. C. Evans, Partial Differential Equations 2nd edition, Graduate Studies in Mathematics 19 American Mathematical Society, Providence, Rhode Island, 2010. doi: 10.1090/gsm/019.  Google Scholar

[13]

X. Fernández-Real and X. Ros-Oton, Boundary regularity for the fractional heat equation, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math., 110 (2016), 49-64.  doi: 10.1007/s13398-015-0218-6.  Google Scholar

[14]

A. Greco, Convex functions over the whole space locally satisfying fractional equations, Minimax Theory Appl., 2 (2017), 51-68.   Google Scholar

[15]

A. Greco and R. Servadei, Hopf's lemma and constrained radial symmetry for the fractional Laplacian, Math. Res. Lett., 23 (2016), 863-885.  doi: 10.4310/MRL.2016.v23.n3.a14.  Google Scholar

[16]

A. IannizzottoS. Mosconi and M. Squassina, $H^s$ versus $C^0$-weighted minimizers, Nonlinear Differ. Equ. Appl., 22 (2015), 477-497.  doi: 10.1007/s00030-014-0292-z.  Google Scholar

[17]

K. IshigeT. Kawakami and H. Michihisa, Asymptotic expansions of solutions of fractional diffusion equations, SIAM J. Math. Anal., 49 (2017), 2167-2190.  doi: 10.1137/16M1101428.  Google Scholar

[18]

K. Ishige and P. Salani, A note on parabolic power concavity, Kodai Math. J., 37 (2014), 668-679.  doi: 10.2996/kmj/1414674615.  Google Scholar

[19]

F. John, Partial Differential Equations fourth edition, Springer, New York (1982). doi: 10.1007/978-1-4684-9333-7.  Google Scholar

[20]

T. Kulczycki, On concavity of solution of Dirichlet problem for the equation $(-Δ)^{1/2 \,} \varphi = 1$ in a convex planar region, J. Eur. Math. Soc., 19 (2017), 1361-1420.  doi: 10.4171/JEMS/695.  Google Scholar

[21]

T. Kulczycki and M. Ryznar, Gradient estimates of harmonic functions and transition densities for Lévy processes, Trans. Amer. Math. Soc., 368 (2016), 281-318.  doi: 10.1090/tran/6333.  Google Scholar

[22]

R. Musina and A. Nazarov, On fractional Laplacians, Comm. Partial Differential Equations, 39 (2014), 1780-1790.  doi: 10.1080/03605302.2013.864304.  Google Scholar

[23]

G. Pólya, On the zeros of an integral function represented by Fourier's integral, J. London Math. Soc., 1 (1926), 98-99.  doi: 10.1112/jlms/s1-1.1.12.  Google Scholar

[24]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[25]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[26]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[27]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sec. A, 144 (2014), 831-855.  doi: 10.1017/S0308210512001783.  Google Scholar

[28]

L. VázquezJ. J. Trujillo and M. P. Velasco, Fractional heat equation and the second law of thermodynamics, Fract. Calc. Appl. Anal., 14 (2011), 334-342.  doi: 10.2478/s13540-011-0021-9.  Google Scholar

[29]

D. V. Widder, Positive temperatures on an infinite rod, Trans. Amer. Math. Soc., 55 (1944), 85-95.  doi: 10.2307/1990141.  Google Scholar

[30]

Fractional heat equation: https://www.ma.utexas.edu/mediawiki/index.php/Fractional_heat-equation Google Scholar

show all references

References:
[1]

B. BarriosI. PeralF. Soria and E. Valdinoci, A Widder's type theorem for the heat equation with non-local diffusion, Arch. Rational Mech. Anal., 213 (2014), 629-650.  doi: 10.1007/s00205-014-0733-1.  Google Scholar

[2]

R. M. Blumenthal and R. H. Getoor, Some theorems on stable processes, Trans. Amer. Math. Soc., 95 (1960), 263-273.  doi: 10.2307/1993291.  Google Scholar

[3]

K. BogdanT. Grzywny and M. Ryznar, Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Prob., 38 (2010), 1901-1923.  doi: 10.1214/10-AOP532.  Google Scholar

[4]

C. Bucur and E. Valdinoci, Non-local Diffusion and Applications Springer, New York (2016). doi: 10.1007/978-3-319-28739-3.  Google Scholar

[5]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 367 (2014), 911-941.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[6]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅱ: Existence, uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc., 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[7]

L. Caffarelli, Non-local diffusions, drifts and games in Nonlinear partial differential equations (H. Holden and K. H. Karlsen eds. ), Springer, New York (2012). doi: 10.1007/978-3-642-25361-4_3.  Google Scholar

[8]

L. Caffarelli and A. Figalli, Regularity of solutions to the parabolic fractional obstacle problem, J. Reine Angew. Math., 680 (2013), 191-233.  doi: 10.1515/crelle.2012.036.  Google Scholar

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[10]

Z. Q. ChenP. Kim and R. Song, Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1307-1329.  doi: 10.4171/JEMS/231.  Google Scholar

[11]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[12]

L. C. Evans, Partial Differential Equations 2nd edition, Graduate Studies in Mathematics 19 American Mathematical Society, Providence, Rhode Island, 2010. doi: 10.1090/gsm/019.  Google Scholar

[13]

X. Fernández-Real and X. Ros-Oton, Boundary regularity for the fractional heat equation, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math., 110 (2016), 49-64.  doi: 10.1007/s13398-015-0218-6.  Google Scholar

[14]

A. Greco, Convex functions over the whole space locally satisfying fractional equations, Minimax Theory Appl., 2 (2017), 51-68.   Google Scholar

[15]

A. Greco and R. Servadei, Hopf's lemma and constrained radial symmetry for the fractional Laplacian, Math. Res. Lett., 23 (2016), 863-885.  doi: 10.4310/MRL.2016.v23.n3.a14.  Google Scholar

[16]

A. IannizzottoS. Mosconi and M. Squassina, $H^s$ versus $C^0$-weighted minimizers, Nonlinear Differ. Equ. Appl., 22 (2015), 477-497.  doi: 10.1007/s00030-014-0292-z.  Google Scholar

[17]

K. IshigeT. Kawakami and H. Michihisa, Asymptotic expansions of solutions of fractional diffusion equations, SIAM J. Math. Anal., 49 (2017), 2167-2190.  doi: 10.1137/16M1101428.  Google Scholar

[18]

K. Ishige and P. Salani, A note on parabolic power concavity, Kodai Math. J., 37 (2014), 668-679.  doi: 10.2996/kmj/1414674615.  Google Scholar

[19]

F. John, Partial Differential Equations fourth edition, Springer, New York (1982). doi: 10.1007/978-1-4684-9333-7.  Google Scholar

[20]

T. Kulczycki, On concavity of solution of Dirichlet problem for the equation $(-Δ)^{1/2 \,} \varphi = 1$ in a convex planar region, J. Eur. Math. Soc., 19 (2017), 1361-1420.  doi: 10.4171/JEMS/695.  Google Scholar

[21]

T. Kulczycki and M. Ryznar, Gradient estimates of harmonic functions and transition densities for Lévy processes, Trans. Amer. Math. Soc., 368 (2016), 281-318.  doi: 10.1090/tran/6333.  Google Scholar

[22]

R. Musina and A. Nazarov, On fractional Laplacians, Comm. Partial Differential Equations, 39 (2014), 1780-1790.  doi: 10.1080/03605302.2013.864304.  Google Scholar

[23]

G. Pólya, On the zeros of an integral function represented by Fourier's integral, J. London Math. Soc., 1 (1926), 98-99.  doi: 10.1112/jlms/s1-1.1.12.  Google Scholar

[24]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[25]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[26]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[27]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sec. A, 144 (2014), 831-855.  doi: 10.1017/S0308210512001783.  Google Scholar

[28]

L. VázquezJ. J. Trujillo and M. P. Velasco, Fractional heat equation and the second law of thermodynamics, Fract. Calc. Appl. Anal., 14 (2011), 334-342.  doi: 10.2478/s13540-011-0021-9.  Google Scholar

[29]

D. V. Widder, Positive temperatures on an infinite rod, Trans. Amer. Math. Soc., 55 (1944), 85-95.  doi: 10.2307/1990141.  Google Scholar

[30]

Fractional heat equation: https://www.ma.utexas.edu/mediawiki/index.php/Fractional_heat-equation Google Scholar

[1]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[2]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[3]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[4]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[5]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[8]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[9]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[10]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[11]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[12]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[13]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[14]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[15]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[19]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[20]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (95)
  • HTML views (57)
  • Cited by (0)

Other articles
by authors

[Back to Top]