Attractors dimension of Lorenz-Stenflo system is estimated. Convergence criteria are proved. Fishing principle for existence of homoclinic trajectory is applied.
Citation: |
[1] |
L. Stenflo, Generalized Lorenz equations for acoustic-gravity waves, Atmosphere Physics Scripts, 53 (1996), 83-84.
![]() |
[2] |
E. N. Lorenz, Deterministic nonperiodic flow, Atmos. Sci., 20 (1963), 130-141.
![]() |
[3] |
O. A. Ladyzhenskaya, Determination of minimal global attractors for the Navier-Stokes equations and other particl, Differential Equations. Russian Mathematical Surveys, 42 (1987), 25-60.
![]() ![]() |
[4] |
J. Kaplan and J. Yorke, Chaotic behavior of multidimensional difference equations, Functional Differential Equations and Approximations of Fixed Points, Springer, Berlin (H. Peitgen and H. Walter eds. ), (1979), 204-227.
![]() ![]() |
[5] |
G. A. Leonov, Lyapunov dimension formulas for Henon and Lorenz attractors, St. Petersburg Math. J., 13 (2002), 453-464.
![]() ![]() |
[6] |
G. A. Leonov, N. V. Kuznetsov, N. Korzhemanova and D. Kusakin, Lyapunov dimension formula for the global attractor of the Lorenz system, Communications in Nonlinear Science and Numerical Simulation, 41 (2016), 84-103.
doi: 10.1016/j.cnsns.2016.04.032.![]() ![]() ![]() |
[7] |
G. A. Leonov, Lyapunov functions in the attractors dimension theory, Appl. Math. and Mech., 76 (2012), 129-141.
doi: 10.1016/j.jappmathmech.2012.05.002.![]() ![]() ![]() |
[8] |
G. A. Leonov, Fishing principle for homoclinic and heteroclinic trajectories, Nonlinear Dynamics, 78 (2014), 2751-2758.
doi: 10.1007/s11071-014-1622-8.![]() ![]() ![]() |
[9] |
G.A. Leonov, General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems, Phys. Lett. A, 376 (2012), 3045-3050.
doi: 10.1016/j.physleta.2012.07.003.![]() ![]() ![]() |
[10] |
G. A. Leonov, Rössler systems: estimates for the dimension of attractors and homoclinic orbits, Dokl. Math., 89 (2014), 369-371.
![]() ![]() |
[11] |
G. A. Leonov, Existence criterion of homoclinic trajectories in the Glukhovsky-Dolzhansky system, Physics Letters A, 379 (2015), 524-528.
doi: 10.1016/j.physleta.2014.12.005.![]() ![]() ![]() |
[12] |
G. A. Leonov,
Strange Attractors and Classical Stability Theory St. Petersburg University Press, St. Petersburg, 2008.
![]() ![]() |
Separatrix
Separatrix