We consider the Dirichlet problem of the focusing energy subcritical NLS outside a smooth compact strictly convex obstacle in dimension three. The critical space of our problem is $\dot{H}^s$ with $0<s<1$. In this paper, we proved that if the initial data $u_{0}$ satisfy $\Vert u_{0}\Vert _{2}^{1-s}\Vert \nabla u_{0}\Vert _{2}^{s}<\Vert \nabla Q\Vert _{2}^{s}\Vert Q\Vert _{2}^{1-s}$ and $ M(u_{0})^{1-s}E(u_{0})^{s}<M(Q)^{1-s}E(Q)^{s},$ then there exists a unique global solution which scatters in both time directions, where $Q$ denotes the ground state solution in the whole space case.
Citation: |
R. Anton
, Global existence for defocusing cubic NLS and Gross--Pitaveskii equations in exterior domains, J. Math. Pures Appl., 89 (2008)
, 335-354.
doi: 10.1016/j.matpur.2007.12.006.![]() ![]() ![]() |
|
M. D. Blair
, H. F. Smith
and C. D. Sogge
, Strichartz estimates and nonlinear Schrödinger equation on manifolds with boundary, Math. Ann., 354 (2012)
, 1397-1430.
doi: 10.1007/s00208-011-0772-y.![]() ![]() ![]() |
|
J. Bourgain
, Global well-posedness of defocusing 3D critical NLS in the radial case, JAMS, 12 (1999)
, 145-171.
doi: 10.1090/S0894-0347-99-00283-0.![]() ![]() ![]() |
|
H. Brézis
and E. Lieb
, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983)
, 486-490.
doi: 10.2307/2044999.![]() ![]() ![]() |
|
T. Cazenave, Semilinear Schrödinger equations Courant Lecture Notes in Mathematics 10 New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010.![]() ![]() ![]() |
|
J. Colliander
, M. Keel
, G. Staffilani
, H. Takaoka
and T. Tao
, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb{R}^{3}$, Ann. of Math., 167 (2008)
, 767-865.
doi: 10.4007/annals.2008.167.767.![]() ![]() ![]() |
|
E. B. Davies, Spectral theory and differential operators Cambridge Studies in Advanced Mathematics42 Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511623721.![]() ![]() ![]() |
|
T. Duyckaerts J. Holmer
and S. Roudenko
, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008)
, 1233-1250.
doi: 10.4310/MRL.2008.v15.n6.a13.![]() ![]() ![]() |
|
D. Fang
, J. Xie
and T. Cazenave
, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011)
, 2037-2062.
doi: 10.1007/s11425-011-4283-9.![]() ![]() ![]() |
|
J. Holmer
and S. Roudenko
, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Communications in Mathematical Physics, 282 (2008)
, 435-467.
doi: 10.1007/s00220-008-0529-y.![]() ![]() ![]() |
|
O. Ivanovici
, On the Schrödinger equation outside strictly convex obstacles, Anal. PDE, 3 (2010)
, 261-293.
doi: 10.2140/apde.2010.3.261.![]() ![]() ![]() |
|
C. E. Kenig
and F. Merle
, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 116 (2006)
, 645-675.
doi: 10.1007/s00222-006-0011-4.![]() ![]() ![]() |
|
S. Keraani
, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, 175 (2001)
, 353-392.
doi: 10.1006/jdeq.2000.3951.![]() ![]() ![]() |
|
R. Killip
, M. Visan
and X. Zhang
, The focusing cubic NLS on exterior domains in three dimensions, Applied Mathematics Research eXpress, 1 (2016)
, 146-180.
doi: 10.1093/amrx/abv012.![]() ![]() ![]() |
|
R. Killip
, M. Visan
and X. Zhang
, Riesz transforms outside a convex obstacle, Int. Math. Res. Not., 19 (2016)
, 5875-5921.
doi: 10.1093/imrn/rnv338.![]() ![]() ![]() |
|
R. Killip
, M. Visan
and X. Zhang
, Quintic NLS in the exterior of a strictly convex obstacle, American Journal of Mathematics, 138 (2016)
, 1193-1346.
doi: 10.1353/ajm.2016.0039.![]() ![]() ![]() |
|
M. K. Kwong
, Uniqueness of positive solutions of $Δ u-u+u^p=0$ in $\mathbb{R}^n$, Arch. Rational Mech. Anal., 105 (1989)
, 243-266.
doi: 10.1007/BF00251502.![]() ![]() ![]() |
|
H. Bahouri
and P. Gérard
, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999)
, 131-175.
![]() ![]() |
|
W. A. Strauss
, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977)
, 149-162.
![]() ![]() |
|
T. Tao and M. Visan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions,
Electron. J. Differential Equations 118 (2005), 28pp. (electronic).
![]() ![]() |
|
M. I. Weinstein
, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983)
, 567-576.
![]() ![]() |