Advanced Search
Article Contents
Article Contents

The focusing NLS on exterior domains in three dimensions

Abstract Full Text(HTML) Related Papers Cited by
  • We consider the Dirichlet problem of the focusing energy subcritical NLS outside a smooth compact strictly convex obstacle in dimension three. The critical space of our problem is $\dot{H}^s$ with $0<s<1$. In this paper, we proved that if the initial data $u_{0}$ satisfy $\Vert u_{0}\Vert _{2}^{1-s}\Vert \nabla u_{0}\Vert _{2}^{s}<\Vert \nabla Q\Vert _{2}^{s}\Vert Q\Vert _{2}^{1-s}$ and $ M(u_{0})^{1-s}E(u_{0})^{s}<M(Q)^{1-s}E(Q)^{s},$ then there exists a unique global solution which scatters in both time directions, where $Q$ denotes the ground state solution in the whole space case.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   R. Anton , Global existence for defocusing cubic NLS and Gross--Pitaveskii equations in exterior domains, J. Math. Pures Appl., 89 (2008) , 335-354.  doi: 10.1016/j.matpur.2007.12.006.
      M. D. Blair , H. F. Smith  and  C. D. Sogge , Strichartz estimates and nonlinear Schrödinger equation on manifolds with boundary, Math. Ann., 354 (2012) , 1397-1430.  doi: 10.1007/s00208-011-0772-y.
      J. Bourgain , Global well-posedness of defocusing 3D critical NLS in the radial case, JAMS, 12 (1999) , 145-171.  doi: 10.1090/S0894-0347-99-00283-0.
      H. Brézis  and  E. Lieb , A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983) , 486-490.  doi: 10.2307/2044999.
      T. Cazenave, Semilinear Schrödinger equations Courant Lecture Notes in Mathematics 10 New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.
      J. Colliander , M. Keel , G. Staffilani , H. Takaoka  and  T. Tao , Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb{R}^{3}$, Ann. of Math., 167 (2008) , 767-865.  doi: 10.4007/annals.2008.167.767.
      E. B. Davies, Spectral theory and differential operators Cambridge Studies in Advanced Mathematics42 Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511623721.
      T. Duyckaerts J. Holmer  and  S. Roudenko , Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008) , 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.
      D. Fang , J. Xie  and  T. Cazenave , Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011) , 2037-2062.  doi: 10.1007/s11425-011-4283-9.
      J. Holmer  and  S. Roudenko , A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Communications in Mathematical Physics, 282 (2008) , 435-467.  doi: 10.1007/s00220-008-0529-y.
      O. Ivanovici , On the Schrödinger equation outside strictly convex obstacles, Anal. PDE, 3 (2010) , 261-293.  doi: 10.2140/apde.2010.3.261.
      C. E. Kenig  and  F. Merle , Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 116 (2006) , 645-675.  doi: 10.1007/s00222-006-0011-4.
      S. Keraani , On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, 175 (2001) , 353-392.  doi: 10.1006/jdeq.2000.3951.
      R. Killip , M. Visan  and  X. Zhang , The focusing cubic NLS on exterior domains in three dimensions, Applied Mathematics Research eXpress, 1 (2016) , 146-180.  doi: 10.1093/amrx/abv012.
      R. Killip , M. Visan  and  X. Zhang , Riesz transforms outside a convex obstacle, Int. Math. Res. Not., 19 (2016) , 5875-5921.  doi: 10.1093/imrn/rnv338.
      R. Killip , M. Visan  and  X. Zhang , Quintic NLS in the exterior of a strictly convex obstacle, American Journal of Mathematics, 138 (2016) , 1193-1346.  doi: 10.1353/ajm.2016.0039.
      M. K. Kwong , Uniqueness of positive solutions of $Δ u-u+u^p=0$ in $\mathbb{R}^n$, Arch. Rational Mech. Anal., 105 (1989) , 243-266.  doi: 10.1007/BF00251502.
      H. Bahouri  and  P. Gérard , High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999) , 131-175. 
      W. A. Strauss , Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977) , 149-162. 
      T. Tao and M. Visan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differential Equations 118 (2005), 28pp. (electronic).
      M. I. Weinstein , Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983) , 567-576. 
  • 加载中

Article Metrics

HTML views(284) PDF downloads(206) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint