We give an explicit construction of a magnetic Schrödinger operator corresponding to a field with flux through finitely many holes of the Sierpinski Gasket. The operator is shown to have discrete spectrum accumulating at ∞, and it is shown that the asymptotic distribution of eigenvalues is the same as that for the Laplacian. Most eigenfunctions may be computed using gauge transformations corresponding to the magnetic field and the remainder of the spectrum may be approximated to arbitrary precision by using a sequence of approximations by magnetic operators on finite graphs.
Citation: |
Skye Aaron , Zach Conn , Robert S. Strichartz and Hui Yu , Hodge-de Rham theory on fractal graphs and fractals, Commun. Pure Appl. Anal., 13 (2014) , 903-928. doi: 10.3934/cpaa.2014.13.903. | |
Eric Akkermans, Statistical mechanics and quantum fields on fractals, 601 (2013), 1-21 doi: 10.1090/conm/601/11962. | |
Eric Akkermans, Olivier Benichou, Gerald V Dunne, Alexander Teplyaev and Raphael Voituriez, Spatial log-periodic oscillations of first-passage observables in fractals, Physical Review E 86 (2012). | |
Eric Akkermans, Gerald V Dunne and Alexander Teplyaev, Physical consequences of complex dimensions of fractals, Europhysics Letters, 88 (2009), 40007. | |
Eric Akkermans, Gerald V Dunne and Alexander Teplyaev, Thermodynamics of photons on fractals, Physical review letters, 105 (2010), 230407. | |
Shlomo Alexander , Some properties of the spectrum of the Sierpiński gasket in a magnetic field, Phys. Rev. B, 29 (1984) , 5504-5508. | |
Shlomo Alexander and Raymond Orbach , Density of states on fractals: fractons, Journal de Physique Lettres, 43 (1982) , 625-631. | |
Martin T. Barlow and Edwin A. Perkins , Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields, 79 (1988) , 543-623. doi: 10.1007/BF00318785. | |
J. Bellissard, Renormalization group analysis and quasicrystals, in Ideas and Methods in Quantum and Statistical Physics (Oslo, 1988), Cambridge Univ. Press, Cambridge, 1992, pp. 118-148. | |
Nicolas Bouleau and Francis Hirsch, Dirichlet Forms and Analysis on Wiener Space, De Gruyter Studies in Mathematics, vol. 14, Walter de Gruyter & Co. , Berlin, 1991. doi: 10.1515/9783110858389. | |
Fabio Cipriani , Daniele Guido , Tommaso Isola and Jean-Luc Sauvageot , Integrals and potentials of differential 1-forms on the Sierpinski gasket, Adv. Math., 239 (2013) , 128-163. doi: 10.1016/j.aim.2013.02.014. | |
Fabio Cipriani and Jean-Luc Sauvageot , Derivations as square roots of Dirichlet forms, J. Funct. Anal., 201 (2003) , 78-120. doi: 10.1016/S0022-1236(03)00085-5. | |
Fabio Cipriani and Jean-Luc Sauvageot , Fredholm modules on P.C.F. self-similar fractals and their conformal geometry, Comm. Math. Phys., 286 (2009) , 541-558. doi: 10.1007/s00220-008-0673-4. | |
Kyallee Dalrymple , Robert S. Strichartz and Jade P. Vinson , Fractal differential equations on the Sierpinski gasket, J. Fourier Anal. Appl., 5 (1999) , 203-284. doi: 10.1007/BF01261610. | |
Jessica L. DeGrado , Luke G. Rogers and Robert S. Strichartz , Gradients of Laplacian eigenfunctions on the Sierpinski gasket, Proc. Amer. Math. Soc., 137 (2009) , 531-540. doi: 10.1090/S0002-9939-08-09711-6. | |
Eytan Domany , Shlomo Alexander , David Bensimon and Leo P. Kadanoff , Solutions to the Schrödinger equation on some fractal lattices, Phys. Rev. B, 28 (1983) , 3110-3123. | |
Gerald V. Dunne, Heat kernels and zeta functions on fractals J. Phys. A 45 (2012), 374016, 22. doi: 10.1088/1751-8113/45/37/374016. | |
Patrick J. Fitzsimmons, Even and odd continuous additive functionals, in Dirichlet Forms and Stochastic Processes (Beijing, 1993), de Gruyter, Berlin, 1995, pp. 139-154. | |
M. Fukushima and T. Shima , On a spectral analysis for the Sierpiński gasket, Potential Anal., 1 (1992) , 1-35. doi: 10.1007/BF00249784. | |
Masatoshi Fukushima, Yoichi Oshima and Masayoshi Takeda, Dirichlet Forms and Symmetric Markov Processes extended ed. , De Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co. , Berlin, 2011. | |
J. M. Ghez , W. Wang , R. Rammal , B. Pannetier and J. Bellissard , Band spectrum for an electron on a Sierpinsky gasket in a magnetic field, Phys. Rev. B, 64 (1987) , 1291-1294. | |
Batu Güneysu , Matthias Keller and Marcel Schmidt , A Feynman-Kac-Itȏ formula for magnetic Schrödinger operators on graphs, Probab. Theory Related Fields, 165 (2016) , 365-399. doi: 10.1007/s00440-015-0633-9. | |
Michael Hinz , Magnetic energies and Fey-Kac-Itȏ formulas for symmetric Markov processes, Stoch. Anal. Appl., 33 (2015) , 1020-1049. doi: 10.1080/07362994.2015.1077715. | |
Michael Hinz , Michael Röckner and Alexander Teplyaev , Vector analysis for Dirichlet forms and quasilinear PDE and SPDE on metric measure spaces, Stochastic Process. Appl., 123 (2013) , 4373-4406. doi: 10.1016/j.spa.2013.06.009. | |
Michael Hinz and Luke G. Rogers , Magnetic fields on resistance spaces, J. Fractal Geom., 3 (2016) , 75-93. doi: 10.4171/JFG/30. | |
Michael Hin and Alexander Teplyaev , Dirac and magnetic Schrödinger operators on fractals, J. Funct. Anal., 265 (2013) , 2830-2854. doi: 10.1016/j.jfa.2013.07.021. | |
Marius Ionescu , Luke G. Rogers and Alexander Teplyaev , Derivations and Dirichlet forms on fractals, J. Funct. Anal., 263 (2012) , 2141-2169. doi: 10.1016/j.jfa.2012.05.021. | |
Jun Kigami , A harmonic calculus on the Sierpiński spaces, Japan J. Appl. Math., 6 (1989) , 259-290. doi: 10.1007/BF03167882. | |
Jun Kigami , Distributions of localized eigenvalues of Laplacians on post critically finite self-similar sets, J. Funct. Anal., 156 (1998) , 170-198. doi: 10.1006/jfan.1998.3243. | |
Jun Kigami, Analysis on Fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511470943. | |
Jun Kigami and Michel L. Lapidus , Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals, Comm. Math. Phys., 158 (1993) , 93-125. | |
Tom Lindstrøm, Brownian motion on nested fractals, Mem. Amer. Math. Soc. , 83 (1990), no. 420, ⅳ+128. doi: 10.1090/memo/0420. | |
Leonid Malozemov and Alexander Teplyaev , Self-similarity, operators and dynamics, Math. Phys. Anal. Geom., 6 (2003) , 201-218. doi: 10.1023/A:1024931603110. | |
Shintaro Nakao , Stochastic calculus for continuous additive functionals of zero energy, Z. Wahrsch. Verw. Gebiete, 68 (1985) , 557-578. doi: 10.1007/BF00535345. | |
R. Rammal , Harmonic analysis in fractal spaces: random walk statistics and spectrum of the Schrödinger equation, Phys. Rep., 103 (1984) , 151-159, Common trends in particle and condensed matter physics (Les Houches, 1983). doi: 10.1016/0370-1573(84)90075-9. | |
R. Rammal , Spectrum of harmonic excitations on fractals, J. Physique, 45 (1984) , 191-206. | |
R. Rammal and G. Toulouse , Random walks on fractal structure and percolation cluster, J. Physique Letters, 44 (1983) , L13-L22. | |
Tadashi Shima , On eigenvalue problems for Laplacians on p.c.f. self-similar sets, Japan J. Indust. Appl. Math., 13 (1996) , 1-23. doi: 10.1007/BF03167295. | |
Barry Simon , Almost periodic Schrödinger operators: a review, Adv. in Appl. Math., 3 (1982) , 463-490. doi: 10.1016/S0196-8858(82)80018-3. | |
Robert S. Strichartz , Fractafolds based on the Sierpiński gasket and their spectra, Trans. Amer. Math. Soc., 355 (2003) , 4019-4043 (electronic). doi: 10.1090/S0002-9947-03-03171-4. | |
Robert S. Strichartz, Differential Equations on Fractals: A Tutorial Princeton University Press, Princeton, NJ, 2006. | |
Robert S. Strichartz and Alexander Teplyaev , Spectral analysis on infinite Sierpiński fractafolds, J. Anal. Math., 116 (2012) , 255-297. doi: 10.1007/s11854-012-0007-5. |
(a) The
Eigenvalues less than
The Ladder Fractafold
The graphs
he folded Sierpinski Ladder Fractafold