In this paper we study the limit cycle bifurcation of a piecewise smooth Hamiltonian system. By using the Melnikov function of piecewise smooth near-Hamiltonian systems, we obtain that at most $12n+7$ limit cycles can bifurcate from the period annulus up to the first order in $\varepsilon$.
Citation: |
[1] |
M. Akhmet,
Principles of Discontinuous Dynamical Systems, Springer-Verlag, New York, 2010.
doi: 10.1007/978-1-4612-0873-0.![]() ![]() ![]() |
[2] |
M. Akhmet and M. Turan, Bifurcation of discontinuous limit cycles of the Van der Pol equation, Math. Comput. Simulat., 95 (2014), 39-54.
doi: 10.2307/2152750.![]() ![]() ![]() |
[3] |
M. di Bernardo, C. Budd, A. Champneys and P. Kowalczyk,
Piecewise-smooth Dynamical Systems, Theory and Applications, Springer-Verlag, London, 2008.
doi: 10.1007/978-1-4612-0873-0.![]() ![]() ![]() |
[4] |
B. Coll, A. Gasull and R. Prohens, Degenerate Hopf bifurcation in discontinuous planar systems, J. Math. Anal. Appl., 253 (2001), 671-690.
doi: 10.1006/jmaa.2000.7188.![]() ![]() ![]() |
[5] |
A. Filippov,
Differential Equation with Discontinuous Righthand Sides, Kluwer Academic Pub. , Dordrecht, The Netherlands, 1988.
doi: 10.1007/978-1-4612-0873-0.![]() ![]() ![]() |
[6] |
M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Differential Equations, 248 (2010), 2399-2416.
doi: 10.1016/j.jde.2009.10.002.![]() ![]() ![]() |
[7] |
C. Henry, Differential equations with discontinuous righthand side for planning procedure, J. Econom. Theory, 4 (1972), 541-551.
doi: 10.1016/0022-0531(72)90138-X.![]() ![]() ![]() |
[8] |
S. Huan and X. Yang, On the number of limit cycles in general planar piecewise linear systems of node-node types, J. Math. Anal. Appl., 411 (1972), 340-353.
doi: 10.1016/j.jmaa.2013.08.064.![]() ![]() ![]() |
[9] |
Y. Ilyashenko, Centennial history of Hilbert's 16th problem, Bull. Amer. Math. Soc., 39 (2002), 301-354.
doi: 10.1090/S0273-0979-02-00946-1.![]() ![]() ![]() |
[10] |
V. Krivan, On the Gause predator-prey model with a refuge: a fresh look at the history, J. Theoret. Biol., 274 (2011), 67-73.
doi: 10.1016/j.jtbi.2011.01.016.![]() ![]() ![]() |
[11] |
M. Kunze,
Non-Smooth Dynamical Systems, Springer-Verlag, Berlin, 2000.
doi: 10.1007/978-1-4612-0873-0.![]() ![]() ![]() |
[12] |
C. Li, Abelian integrals and limit cycles, Qual. Theory Dyn. Syst., 11 (2012), 111-128.
doi: 10.1007/s12346-011-0051-z.![]() ![]() ![]() |
[13] |
S. Li and C. Liu, A linear estimate of the number of limit cycles for some planar piecewise smooth quadratic differential system, J. Math. Anal. Appl., 428 (2015), 1354-1367.
doi: 10.1016/j.jmaa.2015.03.074.![]() ![]() ![]() |
[14] |
F. Liang, M. Han and V. Romanovski, Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop, Nonlinear Anal., 75 (2012), 4355-4374.
doi: 10.1016/j.na.2012.03.022.![]() ![]() ![]() |
[15] |
X. Liu and M. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg, 20 (2010), 1379-1390.
doi: 10.1142/S021812741002654X.![]() ![]() ![]() |
[16] |
J. Llibre, A. Mereu and D. Novaes, Averaging theory for discontinuous piecewise differential systems, J. Differential Equations, 258 (2015), 4007-4032.
doi: 10.1016/j.jde.2015.01.022.![]() ![]() ![]() |
[17] |
N. Minorski,
Nonlinear Oscillations, Van Nostrand, New York, 1962.
doi: 10.1007/978-1-4612-0873-0.![]() ![]() ![]() |
[18] |
M. Teixeira,
Perturbation Theory for Non-smooth Systems, Springer-Verlag, New York, 2009.
doi: 10.1007/978-1-4612-0873-0.![]() ![]() ![]() |
[19] |
Y. Xiong and M. Han, Limit cycle bifurcations in a class of perturbed piecewise smooth systems, Appl. Math. Comput., 242 (2014), 47-64.
doi: 10.1016/j.amc.2014.05.035.![]() ![]() ![]() |
[20] |
J. Yang and L. Zhao, Zeros of Abelian integrals for a quartic Hamiltonian with figure-of-eight loop through a nilpotent saddle, Nonlinear Anal.: Real World Appl., 27 (2016), 350-365.
doi: 10.1016/j.nonrwa.2015.08.005.![]() ![]() ![]() |
The closed orbits of system (1.4)
Phase portrait of system (1.12)