November  2017, 16(6): 2357-2376. doi: 10.3934/cpaa.2017116

Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions

University of Surrey, Department of Mathematics, Guildford, GU2 7XH, United Kingdom

* Corresponding author

Received  March 2017 Revised  April 2017 Published  July 2017

Fund Project: This work is partially supported by the grants 14-41-00044 and 14-21-00025 of RSF as well as grants 14-01-00346 and 15-01-03587 of RFBR.

This is the first part of our study of inertial manifolds for the system of 1D reaction-diffusion-advection equations which is devoted to the case of Dirichlet or Neumann boundary conditions. Although this problem does not initially possess the spectral gap property, it is shown that this property is satisfied after the proper non-local change of the dependent variable. The case of periodic boundary conditions where the situation is principally different and the inertial manifold may not exist is considered in the second part of our study.

Citation: Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116
References:
[1]

A. Babin and M. Vishik, Attractors of Evolution Equations, Amsterdam etc. : North-Holland, 1992.  Google Scholar

[2]

T. BridgesJ. Pennant and S. Zelik, Degenerate hyperbolic conservation laws with dissipation: reduction to and validity of a class of Burgers-type equations, Arch. Ration. Mech. Anal., 214 (2014), 671-716.  doi: 10.1007/s00205-014-0772-7.  Google Scholar

[3]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics, Providence, RI: American Mathematical Society (AMS), 2002.  Google Scholar

[4]

A. Eden S. Zelik and V. Kalantarov, Counterexamples to regularity of Mañé projections in the theory of attractors, Russ. Math. Surv., 68 (2013), 199-226.   Google Scholar

[5]

C. FoiasG. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differ. Equations, 73 (1988), 309-353.  doi: 10.1016/0022-0396(88)90110-6.  Google Scholar

[6]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics. Vol. 840, Springer-Verlag. Berlin-Heidelberg-New York, 1981.  Google Scholar

[7]

A. Kostianko, Inertial manifolds for the 3D modified-Leray-α model with periodic boundary conditions, submitted, 2015. Google Scholar

[8]

A. Kostianko and S. Zelik, Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions, Commun. Pure Appl. Anal., 14 (2015), 2069-2094.  doi: 10.3934/cpaa.2015.14.2069.  Google Scholar

[9]

A. Kostianko and S. Zelik, Inertial manifolds for 1D reaction-diffusion advection systems. Part Ⅱ: periodic boundary conditions equations with periodic boundary conditions, submitted, 2017. Google Scholar

[10]

A. Kostianko and S. Zelik, Kwak transform and inertial manifolds revisited, submitted, 2017. Google Scholar

[11]

I. Kukavica, Fourier parametrization of attractors for dissipative equations in one space dimension, J. Dynam. Diff. Eqns, 15 (2003), 473-484.  doi: 10.1023/B:JODY.0000009744.13730.01.  Google Scholar

[12]

M. Kwak, Finite dimensional inertial forms for 2D Navier-Stokes equations, Indiana Univ. Math. J., 41 (1992), 927-982.  doi: 10.1512/iumj.1992.41.41051.  Google Scholar

[13]

H. Kwean, An extension of the principle of spatial averaging for inertial manifolds, J. Aust. Math. Soc., Ser. A, 66 (1999), 125-142.   Google Scholar

[14]

J. Mallet-Paret and G. Sell, Inertial manifolds for reaction diffusion equations in higher space dimensions, J. Am. Math. Soc., 1 (1988), 804-866.  doi: 10.2307/1990993.  Google Scholar

[15]

M. Miklavčič, A sharp condition for existence of an inertial manifold, J. Dyn. Differ. Equations, 3 (1991), 437-456.  doi: 10.1007/BF01049741.  Google Scholar

[16]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, Amsterdam: Elsevier/North-Holland, (2008), 103-200. doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[17]

J. Robinson, Dimensions, Embeddings, and Attractors Cambridge: Cambridge University Press, 2011.  Google Scholar

[18]

A. Romanov, Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations, Russ. Acad. Sci., Izv., Math., 43 (1994), 31-47.  doi: 10.1070/IM1994v043n01ABEH001557.  Google Scholar

[19]

A. Romanov, Finite-dimensional limiting dynamics of dissipative parabolic equations, Sb. Math., 191 (2000), 99-112.  doi: 10.1070/SM2000v191n03ABEH000466.  Google Scholar

[20]

A. Romanov, Finite-dimensional dynamics on attractors of nonlinear parabolic equations, Izv. Math., 65 (2001), 977-1001; translation from izv.  doi: 10.1070/IM2001v065n05ABEH000359.  Google Scholar

[21]

A. Romanov, A parabolic equation with nonlocal diffusion without a smooth inertial manifold, Math. Notes, 96 (2014), 548-555.  doi: 10.1134/S0001434614090296.  Google Scholar

[22]

A. Romanov, On the hyperbolicity properties of inertial manifolds of reaction-diffusion equation, Dynamics of PDEs, 13 (2016), 263-272.  doi: 10.4310/DPDE.2016.v13.n3.a4.  Google Scholar

[23]

R. Rosa and R. Temam, Inertial manifolds and normal hyperbolicity, Acta Applicandae Mathematicae, 45 (1996), 1-50.  doi: 10.1007/BF00047882.  Google Scholar

[24]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, New York, NY: Springer, 2nd ed. , 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[25]

J. Vukadinovic, Inertial manifolds for a Smoluchowski equation on a circle, Nonlinearity, 21 (2008), 1533-1545.  doi: 10.1088/0951-7715/21/7/009.  Google Scholar

[26]

J. Vukadinovic, Inertial manifolds for a Smoluchowski equation on the unit sphere, Comm. Math. Phys., 285 (2009), 975-990.  doi: 10.1007/s00220-008-0460-2.  Google Scholar

[27]

J. Vukadinovic, Global dissipativity and inertial manifolds for diffusive Burgers equations with low-wavenumber instability, Discrete Contin. Dyn. Syst., 29 (2011), 327-341.  doi: 10.3934/dcds.2011.29.327.  Google Scholar

[28]

S. Zelik, Inertial manifolds and finite-dimensional reduction for dissipative pdes, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 144 (2014), 1245-1327.  doi: 10.1017/S0308210513000073.  Google Scholar

show all references

References:
[1]

A. Babin and M. Vishik, Attractors of Evolution Equations, Amsterdam etc. : North-Holland, 1992.  Google Scholar

[2]

T. BridgesJ. Pennant and S. Zelik, Degenerate hyperbolic conservation laws with dissipation: reduction to and validity of a class of Burgers-type equations, Arch. Ration. Mech. Anal., 214 (2014), 671-716.  doi: 10.1007/s00205-014-0772-7.  Google Scholar

[3]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics, Providence, RI: American Mathematical Society (AMS), 2002.  Google Scholar

[4]

A. Eden S. Zelik and V. Kalantarov, Counterexamples to regularity of Mañé projections in the theory of attractors, Russ. Math. Surv., 68 (2013), 199-226.   Google Scholar

[5]

C. FoiasG. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differ. Equations, 73 (1988), 309-353.  doi: 10.1016/0022-0396(88)90110-6.  Google Scholar

[6]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics. Vol. 840, Springer-Verlag. Berlin-Heidelberg-New York, 1981.  Google Scholar

[7]

A. Kostianko, Inertial manifolds for the 3D modified-Leray-α model with periodic boundary conditions, submitted, 2015. Google Scholar

[8]

A. Kostianko and S. Zelik, Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions, Commun. Pure Appl. Anal., 14 (2015), 2069-2094.  doi: 10.3934/cpaa.2015.14.2069.  Google Scholar

[9]

A. Kostianko and S. Zelik, Inertial manifolds for 1D reaction-diffusion advection systems. Part Ⅱ: periodic boundary conditions equations with periodic boundary conditions, submitted, 2017. Google Scholar

[10]

A. Kostianko and S. Zelik, Kwak transform and inertial manifolds revisited, submitted, 2017. Google Scholar

[11]

I. Kukavica, Fourier parametrization of attractors for dissipative equations in one space dimension, J. Dynam. Diff. Eqns, 15 (2003), 473-484.  doi: 10.1023/B:JODY.0000009744.13730.01.  Google Scholar

[12]

M. Kwak, Finite dimensional inertial forms for 2D Navier-Stokes equations, Indiana Univ. Math. J., 41 (1992), 927-982.  doi: 10.1512/iumj.1992.41.41051.  Google Scholar

[13]

H. Kwean, An extension of the principle of spatial averaging for inertial manifolds, J. Aust. Math. Soc., Ser. A, 66 (1999), 125-142.   Google Scholar

[14]

J. Mallet-Paret and G. Sell, Inertial manifolds for reaction diffusion equations in higher space dimensions, J. Am. Math. Soc., 1 (1988), 804-866.  doi: 10.2307/1990993.  Google Scholar

[15]

M. Miklavčič, A sharp condition for existence of an inertial manifold, J. Dyn. Differ. Equations, 3 (1991), 437-456.  doi: 10.1007/BF01049741.  Google Scholar

[16]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, Amsterdam: Elsevier/North-Holland, (2008), 103-200. doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[17]

J. Robinson, Dimensions, Embeddings, and Attractors Cambridge: Cambridge University Press, 2011.  Google Scholar

[18]

A. Romanov, Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations, Russ. Acad. Sci., Izv., Math., 43 (1994), 31-47.  doi: 10.1070/IM1994v043n01ABEH001557.  Google Scholar

[19]

A. Romanov, Finite-dimensional limiting dynamics of dissipative parabolic equations, Sb. Math., 191 (2000), 99-112.  doi: 10.1070/SM2000v191n03ABEH000466.  Google Scholar

[20]

A. Romanov, Finite-dimensional dynamics on attractors of nonlinear parabolic equations, Izv. Math., 65 (2001), 977-1001; translation from izv.  doi: 10.1070/IM2001v065n05ABEH000359.  Google Scholar

[21]

A. Romanov, A parabolic equation with nonlocal diffusion without a smooth inertial manifold, Math. Notes, 96 (2014), 548-555.  doi: 10.1134/S0001434614090296.  Google Scholar

[22]

A. Romanov, On the hyperbolicity properties of inertial manifolds of reaction-diffusion equation, Dynamics of PDEs, 13 (2016), 263-272.  doi: 10.4310/DPDE.2016.v13.n3.a4.  Google Scholar

[23]

R. Rosa and R. Temam, Inertial manifolds and normal hyperbolicity, Acta Applicandae Mathematicae, 45 (1996), 1-50.  doi: 10.1007/BF00047882.  Google Scholar

[24]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, New York, NY: Springer, 2nd ed. , 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[25]

J. Vukadinovic, Inertial manifolds for a Smoluchowski equation on a circle, Nonlinearity, 21 (2008), 1533-1545.  doi: 10.1088/0951-7715/21/7/009.  Google Scholar

[26]

J. Vukadinovic, Inertial manifolds for a Smoluchowski equation on the unit sphere, Comm. Math. Phys., 285 (2009), 975-990.  doi: 10.1007/s00220-008-0460-2.  Google Scholar

[27]

J. Vukadinovic, Global dissipativity and inertial manifolds for diffusive Burgers equations with low-wavenumber instability, Discrete Contin. Dyn. Syst., 29 (2011), 327-341.  doi: 10.3934/dcds.2011.29.327.  Google Scholar

[28]

S. Zelik, Inertial manifolds and finite-dimensional reduction for dissipative pdes, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 144 (2014), 1245-1327.  doi: 10.1017/S0308210513000073.  Google Scholar

[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[5]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[6]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[7]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[8]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[9]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[10]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[11]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[14]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (85)
  • HTML views (52)
  • Cited by (3)

Other articles
by authors

[Back to Top]