January  2018, 17(1): 53-66. doi: 10.3934/cpaa.2018004

Infinitely many solutions for generalized quasilinear Schrödinger equations with sign-changing potential

1. 

School of Mathematics and Computational Science, Hunan First Normal University, Changsha, 410205 Hunan, China

2. 

School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan, China

* Corresponding author

Received  November 2016 Revised  July 2017 Published  September 2017

Fund Project: This research was supported by National Natural Science Foundation of China 11671403 and by the Mathematics and Interdisciplinary Sciences project of CSU.

We investigate a class of generalized quasilinear Schrödinger equations
$ -{\rm div}(g^{2}(u)\nabla u)+g(u)g'(u)|\nabla u|^{2}+V(x)u=f(x,u) \mbox{ in }\mathbb{R}^{N},$
where
$ g(u):\mathbb{R}\to\mathbb{R}^{+} $
is a nondecreasing function with respect to
$ |u| $
, the potential
$ V(x) $
and the primitive of the nonlinearity
$ f(x,u) $
are allowed to be sign-changing. Under some suitable assumptions, we obtain the existence of infinitely many nontrivial solutions. The proof is based on a change of variable as well as symmetric Mountain Pass Theorem.
Citation: Hongxia Shi, Haibo Chen. Infinitely many solutions for generalized quasilinear Schrödinger equations with sign-changing potential. Communications on Pure and Applied Analysis, 2018, 17 (1) : 53-66. doi: 10.3934/cpaa.2018004
References:
[1]

T. Bartsch and Z. Wang, Existence and multiple results for some superlinear elliptic problems on $ \mathbb{R}^{N} $, Commun. Partial Differ. Equ., 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.

[2]

A. V. Borovskii and A. L. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter, JETP, 77 (1993), 562-573. 

[3]

H. S. BrandiC. ManusG. MainfrayT. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550. 

[4]

X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse, Phys. Rev. Lett., 70 (1993), 2082-2085. 

[5]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: a dual approach, Nonlinear Anal. TMA, 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.

[6]

Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for generalized quasilinear Schrödinger equations, J. Math. Phys. , 55 (2014), 051501. doi: 10.1063/1.4874108.

[7]

Y. DengS. Peng and S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differential Equations, 260 (2016), 1228-1262.  doi: 10.1016/j.jde.2015.09.021.

[8]

Y. DengS. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147.  doi: 10.1016/j.jde.2014.09.006.

[9]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B, 37 (1980), 83-87.  doi: 10.1007/BF01325508.

[10]

S. Kurihura, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267.  doi: 10.1143/JPSJ.50.3801.

[11]

E. W. LaedkeK. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769.  doi: 10.1063/1.525675.

[12]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations Ⅰ, Proc. Amer. Math. Soc., 131 (2002), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.

[13]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations Ⅱ, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.

[14]

A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves, JETP Lett., 27 (1978), 517-520. 

[15]

V. G. Makhankov and V. K. Fedyanin, Non-linear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1-86.  doi: 10.1016/0370-1573(84)90106-6.

[16]

M. PoppenbergK. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.  doi: 10.1007/s005260100105.

[17]

M. Porkolab and M. V. Goldman, Upper hybrid solitons and oscillating two-stream instabilities, Phys. Fluids, 19 (1976), 872-881.  doi: 10.1063/1.861553.

[18]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, in: CBMS Reg. Conf. Ser. in Math., Vol. 65, Amer. Math. Soc., Providence, RI, 1986. doi: 10.1090/cbms/065.

[19]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689. 

[20]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal., 80 (2013), 194-201.  doi: 10.1016/j.na.2012.10.005.

[21]

H. Shi and H. Chen, Generalized quasilinear asymptotically periodic Schrödinger equations with critical growth, Comput. Math. Appl., 71 (2016), 849-858.  doi: 10.1016/j.camwa.2016.01.007.

[22]

H. Shi and H. Chen, Positive solutions for generalized quasilinear Schrödinger equations with potential vanishing at infinity, Applied Mathematics Letters, 61 (2016), 137-142.  doi: 10.1016/j.aml.2016.06.004.

[23]

H. Shi and H. Chen, Existence and multiplicity of solutions for a class of generalized quasilinear Schrödinger equations, J. Math. Anal. Appl., 452 (2017), 578-594.  doi: 10.1016/j.jmaa.2017.03.020.

[24]

E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33.  doi: 10.1007/s00526-009-0299-1.

[25]

E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935-2949. 

[26]

M. Willem, Minimax Thorem, Birkhäuser, Berlin, 1996.

[27]

X. Wu, Multiple solutions for quasilinear Schrödinger equations with a parameter, J. Differential Equations, 256 (2014), 2619-2632.  doi: 10.1016/j.jde.2014.01.026.

[28]

M. B. Yang, Existence of solutions for a quasilinear Schrödinger equation with subcritical nonlinearities, Nonlinear Anal., 75 (2012), 5362-5373.  doi: 10.1016/j.na.2012.04.054.

[29]

J. ZhangX. H. Tang and W. Zhang, Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential, J. Math. Anal. Appl., 420 (2014), 1762-1775.  doi: 10.1016/j.jmaa.2014.06.055.

show all references

References:
[1]

T. Bartsch and Z. Wang, Existence and multiple results for some superlinear elliptic problems on $ \mathbb{R}^{N} $, Commun. Partial Differ. Equ., 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.

[2]

A. V. Borovskii and A. L. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter, JETP, 77 (1993), 562-573. 

[3]

H. S. BrandiC. ManusG. MainfrayT. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550. 

[4]

X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse, Phys. Rev. Lett., 70 (1993), 2082-2085. 

[5]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: a dual approach, Nonlinear Anal. TMA, 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.

[6]

Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for generalized quasilinear Schrödinger equations, J. Math. Phys. , 55 (2014), 051501. doi: 10.1063/1.4874108.

[7]

Y. DengS. Peng and S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differential Equations, 260 (2016), 1228-1262.  doi: 10.1016/j.jde.2015.09.021.

[8]

Y. DengS. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147.  doi: 10.1016/j.jde.2014.09.006.

[9]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B, 37 (1980), 83-87.  doi: 10.1007/BF01325508.

[10]

S. Kurihura, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267.  doi: 10.1143/JPSJ.50.3801.

[11]

E. W. LaedkeK. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769.  doi: 10.1063/1.525675.

[12]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations Ⅰ, Proc. Amer. Math. Soc., 131 (2002), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.

[13]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations Ⅱ, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.

[14]

A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves, JETP Lett., 27 (1978), 517-520. 

[15]

V. G. Makhankov and V. K. Fedyanin, Non-linear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1-86.  doi: 10.1016/0370-1573(84)90106-6.

[16]

M. PoppenbergK. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.  doi: 10.1007/s005260100105.

[17]

M. Porkolab and M. V. Goldman, Upper hybrid solitons and oscillating two-stream instabilities, Phys. Fluids, 19 (1976), 872-881.  doi: 10.1063/1.861553.

[18]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, in: CBMS Reg. Conf. Ser. in Math., Vol. 65, Amer. Math. Soc., Providence, RI, 1986. doi: 10.1090/cbms/065.

[19]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689. 

[20]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal., 80 (2013), 194-201.  doi: 10.1016/j.na.2012.10.005.

[21]

H. Shi and H. Chen, Generalized quasilinear asymptotically periodic Schrödinger equations with critical growth, Comput. Math. Appl., 71 (2016), 849-858.  doi: 10.1016/j.camwa.2016.01.007.

[22]

H. Shi and H. Chen, Positive solutions for generalized quasilinear Schrödinger equations with potential vanishing at infinity, Applied Mathematics Letters, 61 (2016), 137-142.  doi: 10.1016/j.aml.2016.06.004.

[23]

H. Shi and H. Chen, Existence and multiplicity of solutions for a class of generalized quasilinear Schrödinger equations, J. Math. Anal. Appl., 452 (2017), 578-594.  doi: 10.1016/j.jmaa.2017.03.020.

[24]

E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33.  doi: 10.1007/s00526-009-0299-1.

[25]

E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935-2949. 

[26]

M. Willem, Minimax Thorem, Birkhäuser, Berlin, 1996.

[27]

X. Wu, Multiple solutions for quasilinear Schrödinger equations with a parameter, J. Differential Equations, 256 (2014), 2619-2632.  doi: 10.1016/j.jde.2014.01.026.

[28]

M. B. Yang, Existence of solutions for a quasilinear Schrödinger equation with subcritical nonlinearities, Nonlinear Anal., 75 (2012), 5362-5373.  doi: 10.1016/j.na.2012.04.054.

[29]

J. ZhangX. H. Tang and W. Zhang, Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential, J. Math. Anal. Appl., 420 (2014), 1762-1775.  doi: 10.1016/j.jmaa.2014.06.055.

[1]

Jin-Cai Kang, Xiao-Qi Liu, Chun-Lei Tang. Ground state sign-changing solution for Schrödinger-Poisson system with steep potential well. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022112

[2]

Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (1) : 143-161. doi: 10.3934/cpaa.2018009

[3]

Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure and Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883

[4]

Hui Guo, Tao Wang. A note on sign-changing solutions for the Schrödinger Poisson system. Electronic Research Archive, 2020, 28 (1) : 195-203. doi: 10.3934/era.2020013

[5]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[6]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[7]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

[8]

Xiaoping Chen, Chunlei Tang. Least energy sign-changing solutions for Schrödinger-Poisson system with critical growth. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2291-2312. doi: 10.3934/cpaa.2021077

[9]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

[10]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[11]

Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003

[12]

Teodora-Liliana Dinu. Entire solutions of the nonlinear eigenvalue logistic problem with sign-changing potential and absorption. Communications on Pure and Applied Analysis, 2003, 2 (3) : 311-321. doi: 10.3934/cpaa.2003.2.311

[13]

Addolorata Salvatore. Sign--changing solutions for an asymptotically linear Schrödinger equation. Conference Publications, 2009, 2009 (Special) : 669-677. doi: 10.3934/proc.2009.2009.669

[14]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[15]

J. Húska, Peter Poláčik, M.V. Safonov. Principal eigenvalues, spectral gaps and exponential separation between positive and sign-changing solutions of parabolic equations. Conference Publications, 2005, 2005 (Special) : 427-435. doi: 10.3934/proc.2005.2005.427

[16]

Wei Long, Shuangjie Peng, Jing Yang. Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 917-939. doi: 10.3934/dcds.2016.36.917

[17]

Wen Zhang, Xianhua Tang, Bitao Cheng, Jian Zhang. Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2161-2177. doi: 10.3934/cpaa.2016032

[18]

Huxiao Luo, Xianhua Tang, Zu Gao. Sign-changing solutions for non-local elliptic equations with asymptotically linear term. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1147-1159. doi: 10.3934/cpaa.2018055

[19]

Tsung-Fang Wu. On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function. Communications on Pure and Applied Analysis, 2008, 7 (2) : 383-405. doi: 10.3934/cpaa.2008.7.383

[20]

Diego Berti, Andrea Corli, Luisa Malaguti. Wavefronts for degenerate diffusion-convection reaction equations with sign-changing diffusivity. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 6023-6046. doi: 10.3934/dcds.2021105

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (286)
  • HTML views (115)
  • Cited by (4)

Other articles
by authors

[Back to Top]