January  2018, 17(1): 53-66. doi: 10.3934/cpaa.2018004

Infinitely many solutions for generalized quasilinear Schrödinger equations with sign-changing potential

1. 

School of Mathematics and Computational Science, Hunan First Normal University, Changsha, 410205 Hunan, China

2. 

School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan, China

* Corresponding author

Received  November 2016 Revised  July 2017 Published  September 2017

Fund Project: This research was supported by National Natural Science Foundation of China 11671403 and by the Mathematics and Interdisciplinary Sciences project of CSU.

We investigate a class of generalized quasilinear Schrödinger equations
$ -{\rm div}(g^{2}(u)\nabla u)+g(u)g'(u)|\nabla u|^{2}+V(x)u=f(x,u) \mbox{ in }\mathbb{R}^{N},$
where
$ g(u):\mathbb{R}\to\mathbb{R}^{+} $
is a nondecreasing function with respect to
$ |u| $
, the potential
$ V(x) $
and the primitive of the nonlinearity
$ f(x,u) $
are allowed to be sign-changing. Under some suitable assumptions, we obtain the existence of infinitely many nontrivial solutions. The proof is based on a change of variable as well as symmetric Mountain Pass Theorem.
Citation: Hongxia Shi, Haibo Chen. Infinitely many solutions for generalized quasilinear Schrödinger equations with sign-changing potential. Communications on Pure & Applied Analysis, 2018, 17 (1) : 53-66. doi: 10.3934/cpaa.2018004
References:
[1]

T. Bartsch and Z. Wang, Existence and multiple results for some superlinear elliptic problems on $ \mathbb{R}^{N} $, Commun. Partial Differ. Equ., 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.  Google Scholar

[2]

A. V. Borovskii and A. L. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter, JETP, 77 (1993), 562-573.   Google Scholar

[3]

H. S. BrandiC. ManusG. MainfrayT. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550.   Google Scholar

[4]

X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse, Phys. Rev. Lett., 70 (1993), 2082-2085.   Google Scholar

[5]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: a dual approach, Nonlinear Anal. TMA, 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[6]

Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for generalized quasilinear Schrödinger equations, J. Math. Phys. , 55 (2014), 051501. doi: 10.1063/1.4874108.  Google Scholar

[7]

Y. DengS. Peng and S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differential Equations, 260 (2016), 1228-1262.  doi: 10.1016/j.jde.2015.09.021.  Google Scholar

[8]

Y. DengS. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147.  doi: 10.1016/j.jde.2014.09.006.  Google Scholar

[9]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B, 37 (1980), 83-87.  doi: 10.1007/BF01325508.  Google Scholar

[10]

S. Kurihura, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267.  doi: 10.1143/JPSJ.50.3801.  Google Scholar

[11]

E. W. LaedkeK. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769.  doi: 10.1063/1.525675.  Google Scholar

[12]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations Ⅰ, Proc. Amer. Math. Soc., 131 (2002), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[13]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations Ⅱ, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[14]

A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves, JETP Lett., 27 (1978), 517-520.   Google Scholar

[15]

V. G. Makhankov and V. K. Fedyanin, Non-linear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1-86.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[16]

M. PoppenbergK. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.  doi: 10.1007/s005260100105.  Google Scholar

[17]

M. Porkolab and M. V. Goldman, Upper hybrid solitons and oscillating two-stream instabilities, Phys. Fluids, 19 (1976), 872-881.  doi: 10.1063/1.861553.  Google Scholar

[18]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, in: CBMS Reg. Conf. Ser. in Math., Vol. 65, Amer. Math. Soc., Providence, RI, 1986. doi: 10.1090/cbms/065.  Google Scholar

[19]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689.   Google Scholar

[20]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal., 80 (2013), 194-201.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[21]

H. Shi and H. Chen, Generalized quasilinear asymptotically periodic Schrödinger equations with critical growth, Comput. Math. Appl., 71 (2016), 849-858.  doi: 10.1016/j.camwa.2016.01.007.  Google Scholar

[22]

H. Shi and H. Chen, Positive solutions for generalized quasilinear Schrödinger equations with potential vanishing at infinity, Applied Mathematics Letters, 61 (2016), 137-142.  doi: 10.1016/j.aml.2016.06.004.  Google Scholar

[23]

H. Shi and H. Chen, Existence and multiplicity of solutions for a class of generalized quasilinear Schrödinger equations, J. Math. Anal. Appl., 452 (2017), 578-594.  doi: 10.1016/j.jmaa.2017.03.020.  Google Scholar

[24]

E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33.  doi: 10.1007/s00526-009-0299-1.  Google Scholar

[25]

E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935-2949.   Google Scholar

[26]

M. Willem, Minimax Thorem, Birkhäuser, Berlin, 1996. Google Scholar

[27]

X. Wu, Multiple solutions for quasilinear Schrödinger equations with a parameter, J. Differential Equations, 256 (2014), 2619-2632.  doi: 10.1016/j.jde.2014.01.026.  Google Scholar

[28]

M. B. Yang, Existence of solutions for a quasilinear Schrödinger equation with subcritical nonlinearities, Nonlinear Anal., 75 (2012), 5362-5373.  doi: 10.1016/j.na.2012.04.054.  Google Scholar

[29]

J. ZhangX. H. Tang and W. Zhang, Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential, J. Math. Anal. Appl., 420 (2014), 1762-1775.  doi: 10.1016/j.jmaa.2014.06.055.  Google Scholar

show all references

References:
[1]

T. Bartsch and Z. Wang, Existence and multiple results for some superlinear elliptic problems on $ \mathbb{R}^{N} $, Commun. Partial Differ. Equ., 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.  Google Scholar

[2]

A. V. Borovskii and A. L. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter, JETP, 77 (1993), 562-573.   Google Scholar

[3]

H. S. BrandiC. ManusG. MainfrayT. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550.   Google Scholar

[4]

X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse, Phys. Rev. Lett., 70 (1993), 2082-2085.   Google Scholar

[5]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: a dual approach, Nonlinear Anal. TMA, 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[6]

Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for generalized quasilinear Schrödinger equations, J. Math. Phys. , 55 (2014), 051501. doi: 10.1063/1.4874108.  Google Scholar

[7]

Y. DengS. Peng and S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differential Equations, 260 (2016), 1228-1262.  doi: 10.1016/j.jde.2015.09.021.  Google Scholar

[8]

Y. DengS. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147.  doi: 10.1016/j.jde.2014.09.006.  Google Scholar

[9]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B, 37 (1980), 83-87.  doi: 10.1007/BF01325508.  Google Scholar

[10]

S. Kurihura, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267.  doi: 10.1143/JPSJ.50.3801.  Google Scholar

[11]

E. W. LaedkeK. H. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769.  doi: 10.1063/1.525675.  Google Scholar

[12]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations Ⅰ, Proc. Amer. Math. Soc., 131 (2002), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[13]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations Ⅱ, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[14]

A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves, JETP Lett., 27 (1978), 517-520.   Google Scholar

[15]

V. G. Makhankov and V. K. Fedyanin, Non-linear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1-86.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[16]

M. PoppenbergK. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.  doi: 10.1007/s005260100105.  Google Scholar

[17]

M. Porkolab and M. V. Goldman, Upper hybrid solitons and oscillating two-stream instabilities, Phys. Fluids, 19 (1976), 872-881.  doi: 10.1063/1.861553.  Google Scholar

[18]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, in: CBMS Reg. Conf. Ser. in Math., Vol. 65, Amer. Math. Soc., Providence, RI, 1986. doi: 10.1090/cbms/065.  Google Scholar

[19]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689.   Google Scholar

[20]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal., 80 (2013), 194-201.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[21]

H. Shi and H. Chen, Generalized quasilinear asymptotically periodic Schrödinger equations with critical growth, Comput. Math. Appl., 71 (2016), 849-858.  doi: 10.1016/j.camwa.2016.01.007.  Google Scholar

[22]

H. Shi and H. Chen, Positive solutions for generalized quasilinear Schrödinger equations with potential vanishing at infinity, Applied Mathematics Letters, 61 (2016), 137-142.  doi: 10.1016/j.aml.2016.06.004.  Google Scholar

[23]

H. Shi and H. Chen, Existence and multiplicity of solutions for a class of generalized quasilinear Schrödinger equations, J. Math. Anal. Appl., 452 (2017), 578-594.  doi: 10.1016/j.jmaa.2017.03.020.  Google Scholar

[24]

E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33.  doi: 10.1007/s00526-009-0299-1.  Google Scholar

[25]

E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935-2949.   Google Scholar

[26]

M. Willem, Minimax Thorem, Birkhäuser, Berlin, 1996. Google Scholar

[27]

X. Wu, Multiple solutions for quasilinear Schrödinger equations with a parameter, J. Differential Equations, 256 (2014), 2619-2632.  doi: 10.1016/j.jde.2014.01.026.  Google Scholar

[28]

M. B. Yang, Existence of solutions for a quasilinear Schrödinger equation with subcritical nonlinearities, Nonlinear Anal., 75 (2012), 5362-5373.  doi: 10.1016/j.na.2012.04.054.  Google Scholar

[29]

J. ZhangX. H. Tang and W. Zhang, Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential, J. Math. Anal. Appl., 420 (2014), 1762-1775.  doi: 10.1016/j.jmaa.2014.06.055.  Google Scholar

[1]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[2]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[3]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[4]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[7]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[8]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[9]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

[10]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[11]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[12]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[13]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[16]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[17]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[18]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[19]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[20]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (137)
  • HTML views (110)
  • Cited by (3)

Other articles
by authors

[Back to Top]