• Previous Article
    Liouville results for fully nonlinear integral elliptic equations in exterior domains
  • CPAA Home
  • This Issue
  • Next Article
    Infinitely many solutions for generalized quasilinear Schrödinger equations with sign-changing potential
January  2018, 17(1): 67-84. doi: 10.3934/cpaa.2018005

Stochastic spatiotemporal diffusive predator-prey systems

Yuan Yung Tseng Functinal Analysis Resarch Center, Harbin Normal University, Harbin, 150025, China, School of mathematics and Statistics, Northeast Normal Unversity, Changchun, 130024, China

* Corresponding author

Received  December 2016 Revised  June 2017 Published  September 2017

Fund Project: This work is supported by the National Natural Science Foundation of China grant 11471091,11571086.

In this paper, a spatiotemporal diffusive predator-prey system with Holling type-Ⅲ is considered. By using a Lyapunov-like function, it is proved that the unique local solution of the system must be a a global one if the interaction intensity is small enough. A comparison theorem is used to show that the system can be extinction or stability in mean square under some additional conditions. Finally, an unique invariant measure for the system is obtained.

Citation: Guanqi Liu, Yuwen Wang. Stochastic spatiotemporal diffusive predator-prey systems. Communications on Pure and Applied Analysis, 2018, 17 (1) : 67-84. doi: 10.3934/cpaa.2018005
References:
[1]

P. Balasubramaniam and C. Vidhlya, Global asymptotic stability of stochastic BAM neural networks with distributed delays and reaction-diffusion terms, J. Comput. App. Math., 234 (2010), 3458-3466.  doi: 10.1016/j.cam.2010.05.007.

[2]

T. Caraballo and L. Shaikhet, Stability of delay evolution equations with stochastic perturbations, Commun. Pur. Appl. Anal., 13 (2014), 2095-2113.  doi: 10.3934/cpaa.2014.13.2095.

[3]

P. Chow, Stochastic Partial Differential Equations, 2$ ^{nd} $ edition, CRC Press, New York, 2014.

[4]

H. I. Freedman, Deterministic Mathematical Models in Population Ecoloty, Marcel Dekker, New York, 1980.

[5]

S. L. HollisR. H. Martin and M. Pierre, Global existence and boundedness in reaction-diffusion systems, SIAM J. Math. Anal., 18 (1987), 744-761.  doi: 10.1137/0518057.

[6]

C. Y. JiD. Q. Jiang and N. Z. Shi, Analysis of a predator-prey model with modified Leslie-Goweer and Holling-type Ⅱ schemes with sotchastic perturbation, J. Math. Anal. Appl., 359 (2009), 482-498.  doi: 10.1016/j.jmaa.2009.05.039.

[7]

Y. G. Kao and C. H. Wang, Global stability analysis for stochastic coupled reaction-diffusion systems on networks, Nonlinear Anal-real., 14 (2013), 1457-1465.  doi: 10.1016/j.nonrwa.2012.10.008.

[8]

P. LiuJ. P. Shi and Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discret Contin. Dyn. S., 18 (2013), 2597-2625.  doi: 10.3934/dcdsb.2013.18.2597.

[9]

K. Liu, Stability of Infinite Diemnsional Stochastic Differential Equations with Applications, Chapmen & Hall\CRC, New York, 2006.

[10]

A. J. Lotka, Elements of Physical Biology, Dover Publications, 1925.

[11]

Q. LuoF. DengJ. Bao and Y. Fu, Stabilization of stochastic Hopfield neural network with distributed parameters, Science in China, Ser. F Information Sciences, 47 (2004), 752-762.  doi: 10.1360/03yf0332.

[12]

Q. Luo and X. Mao, Sochastic population dynamics under regime switching, J. Math. Anal. Appl., 334 (2007), 69-84.  doi: 10.1016/j.jmaa.2006.12.032.

[13]

X. Mao, Stochastic Differential Equations and Applications, 2$ ^{nd} $ edition, Horwood Publishing Chichester, UK, 1997. doi: 10.1533/9780857099402.

[14]

X. MaoG. Marion and E. Renshaw, Enviromental Brownian noise suppresses explosions in population dynamis, Stochastic Process. Appl., 97 (2002), 95-110.  doi: 10.1016/S0304-4149(01)00126-0.

[15]

R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, NJ, 2001.

[16]

O. MisiatsO. Stanzhytskyi and N. K. Yip, Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains, J. Theor. Probab., 29 (2016), 996-1026.  doi: 10.1007/s10959-015-0606-z.

[17]

G. D. Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.

[18]

G. D. Prato and J. Zabczyk, Ergodicity for Infinite, Cambridge University Press, Cambridge, 1996. doi: 10.1017/CBO9780511662829.

[19]

Y. TakeuchiN. H. DubN.T. Hieu and K. Sato, Evolution of predator-prey systems described by a Lotka--Volterra equation under random environment, J. Math. Anal. Appl., 323 (2006), 938-957.  doi: 10.1016/j.jmaa.2005.11.009.

[20]

J. Wang, Spatiotemporal Patterns of a Homogeneous Diffusive Predator-Prey System with Holling Type Ⅲ Functional Response, J. Dyn. Diff. Equ., (2016), 1-27.  doi: 10.1007/s10884-016-9517-7.

[21]

J. Wang and H. Fan, Dynamics in a Rosenzweig-Macarthur predator-prey system with quiescence, Discret Contin. Dyn. S., 21 (2016), 909-918.  doi: 10.3934/dcdsb.2016.21.909.

[22]

Y. Yang and D. Jiang, Dynamics of the stochastic low concentration trimolecular chemical reaction model, J. Math. Chem., 52 (2014), 2532-2545.  doi: 10.1007/s10910-014-0398-x.

[23]

Y. Zhang and L. Li, Stability of numerical method for semi-linear stochastic pantograph differential equations, J. Inequal. Appl. , 1 (2016), 30. doi: 10.1186/s13660-016-0971-x.

show all references

References:
[1]

P. Balasubramaniam and C. Vidhlya, Global asymptotic stability of stochastic BAM neural networks with distributed delays and reaction-diffusion terms, J. Comput. App. Math., 234 (2010), 3458-3466.  doi: 10.1016/j.cam.2010.05.007.

[2]

T. Caraballo and L. Shaikhet, Stability of delay evolution equations with stochastic perturbations, Commun. Pur. Appl. Anal., 13 (2014), 2095-2113.  doi: 10.3934/cpaa.2014.13.2095.

[3]

P. Chow, Stochastic Partial Differential Equations, 2$ ^{nd} $ edition, CRC Press, New York, 2014.

[4]

H. I. Freedman, Deterministic Mathematical Models in Population Ecoloty, Marcel Dekker, New York, 1980.

[5]

S. L. HollisR. H. Martin and M. Pierre, Global existence and boundedness in reaction-diffusion systems, SIAM J. Math. Anal., 18 (1987), 744-761.  doi: 10.1137/0518057.

[6]

C. Y. JiD. Q. Jiang and N. Z. Shi, Analysis of a predator-prey model with modified Leslie-Goweer and Holling-type Ⅱ schemes with sotchastic perturbation, J. Math. Anal. Appl., 359 (2009), 482-498.  doi: 10.1016/j.jmaa.2009.05.039.

[7]

Y. G. Kao and C. H. Wang, Global stability analysis for stochastic coupled reaction-diffusion systems on networks, Nonlinear Anal-real., 14 (2013), 1457-1465.  doi: 10.1016/j.nonrwa.2012.10.008.

[8]

P. LiuJ. P. Shi and Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discret Contin. Dyn. S., 18 (2013), 2597-2625.  doi: 10.3934/dcdsb.2013.18.2597.

[9]

K. Liu, Stability of Infinite Diemnsional Stochastic Differential Equations with Applications, Chapmen & Hall\CRC, New York, 2006.

[10]

A. J. Lotka, Elements of Physical Biology, Dover Publications, 1925.

[11]

Q. LuoF. DengJ. Bao and Y. Fu, Stabilization of stochastic Hopfield neural network with distributed parameters, Science in China, Ser. F Information Sciences, 47 (2004), 752-762.  doi: 10.1360/03yf0332.

[12]

Q. Luo and X. Mao, Sochastic population dynamics under regime switching, J. Math. Anal. Appl., 334 (2007), 69-84.  doi: 10.1016/j.jmaa.2006.12.032.

[13]

X. Mao, Stochastic Differential Equations and Applications, 2$ ^{nd} $ edition, Horwood Publishing Chichester, UK, 1997. doi: 10.1533/9780857099402.

[14]

X. MaoG. Marion and E. Renshaw, Enviromental Brownian noise suppresses explosions in population dynamis, Stochastic Process. Appl., 97 (2002), 95-110.  doi: 10.1016/S0304-4149(01)00126-0.

[15]

R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, NJ, 2001.

[16]

O. MisiatsO. Stanzhytskyi and N. K. Yip, Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains, J. Theor. Probab., 29 (2016), 996-1026.  doi: 10.1007/s10959-015-0606-z.

[17]

G. D. Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.

[18]

G. D. Prato and J. Zabczyk, Ergodicity for Infinite, Cambridge University Press, Cambridge, 1996. doi: 10.1017/CBO9780511662829.

[19]

Y. TakeuchiN. H. DubN.T. Hieu and K. Sato, Evolution of predator-prey systems described by a Lotka--Volterra equation under random environment, J. Math. Anal. Appl., 323 (2006), 938-957.  doi: 10.1016/j.jmaa.2005.11.009.

[20]

J. Wang, Spatiotemporal Patterns of a Homogeneous Diffusive Predator-Prey System with Holling Type Ⅲ Functional Response, J. Dyn. Diff. Equ., (2016), 1-27.  doi: 10.1007/s10884-016-9517-7.

[21]

J. Wang and H. Fan, Dynamics in a Rosenzweig-Macarthur predator-prey system with quiescence, Discret Contin. Dyn. S., 21 (2016), 909-918.  doi: 10.3934/dcdsb.2016.21.909.

[22]

Y. Yang and D. Jiang, Dynamics of the stochastic low concentration trimolecular chemical reaction model, J. Math. Chem., 52 (2014), 2532-2545.  doi: 10.1007/s10910-014-0398-x.

[23]

Y. Zhang and L. Li, Stability of numerical method for semi-linear stochastic pantograph differential equations, J. Inequal. Appl. , 1 (2016), 30. doi: 10.1186/s13660-016-0971-x.

[1]

Kexin Wang. Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1699-1714. doi: 10.3934/dcdsb.2019247

[2]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[3]

Wei Wang, Kai Liu, Xiulian Wang. Sensitivity to small delays of mean square stability for stochastic neutral evolution equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2403-2418. doi: 10.3934/cpaa.2020105

[4]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[5]

Pham Huu Anh Ngoc. New criteria for exponential stability in mean square of stochastic functional differential equations with infinite delay. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021040

[6]

Zhen Li, Jicheng Liu. Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5709-5736. doi: 10.3934/dcdsb.2019103

[7]

Hailong Zhu, Jifeng Chu, Weinian Zhang. Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1935-1953. doi: 10.3934/dcds.2018078

[8]

Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Asymptotic behaviour for operators of Grushin type: Invariant measure and singular perturbations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 119-128. doi: 10.3934/dcdss.2019008

[9]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[10]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[11]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5641-5660. doi: 10.3934/dcdsb.2020371

[12]

Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295

[13]

Chuchu Chen, Jialin Hong. Mean-square convergence of numerical approximations for a class of backward stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2051-2067. doi: 10.3934/dcdsb.2013.18.2051

[14]

Fuke Wu, Peter E. Kloeden. Mean-square random attractors of stochastic delay differential equations with random delay. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1715-1734. doi: 10.3934/dcdsb.2013.18.1715

[15]

Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875

[16]

Andriy Stanzhytsky, Oleksandr Misiats, Oleksandr Stanzhytskyi. Invariant measure for neutral stochastic functional differential equations with non-Lipschitz coefficients. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022005

[17]

Chuchu Chen, Jialin Hong, Yulan Lu. Stochastic differential equation with piecewise continuous arguments: Markov property, invariant measure and numerical approximation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022098

[18]

Sampurna Sengupta, Pritha Das, Debasis Mukherjee. Stochastic non-autonomous Holling type-Ⅲ prey-predator model with predator's intra-specific competition. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3275-3296. doi: 10.3934/dcdsb.2018244

[19]

Michael Hutchings. Mean action and the Calabi invariant. Journal of Modern Dynamics, 2016, 10: 511-539. doi: 10.3934/jmd.2016.10.511

[20]

Daifeng Duan, Ben Niu, Junjie Wei. Spatiotemporal dynamics in a diffusive Holling-Tanner model near codimension-two bifurcations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3683-3706. doi: 10.3934/dcdsb.2021202

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (216)
  • HTML views (125)
  • Cited by (0)

Other articles
by authors

[Back to Top]