January  2018, 17(1): 85-112. doi: 10.3934/cpaa.2018006

Liouville results for fully nonlinear integral elliptic equations in exterior domains

Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China

* Corresponding author

Received  January 2017 Revised  June 2017 Published  September 2017

Fund Project: Y. Wang is supported by NSFC, No: 11661045.

In this paper, we obtain Liouville type theorems both in the whole space and exterior domain in viscosity sense for fully nonlinear elliptic inequality involving nonlocal Pucci's operator. The nonlocal property of the operator, we only have a much weaker comparison principle, compared with the inequality with classical Pucci's operators, which give rise to the difficulties for the Hadamard type property in exterior domain.

Citation: Hongxia Zhang, Ying Wang. Liouville results for fully nonlinear integral elliptic equations in exterior domains. Communications on Pure & Applied Analysis, 2018, 17 (1) : 85-112. doi: 10.3934/cpaa.2018006
References:
[1]

S. AlarcónJ. García-Melián and A. Quaas, Liouville type theorems for elliptic equations with gradient terms, Milan Journal of Mathematics, 81 (2013), 171-185.  doi: 10.1007/s00032-013-0197-z.  Google Scholar

[2]

S. N. ArmstrongB. Sirakov and C. K. Smart, Fundamental solutions of homogeneous fully nonlinear elliptic equations, Comm. Pure Appl. Math., 64 (2011), 737-777.  doi: 10.1002/cpa.20360.  Google Scholar

[3]

S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Partial Diff. Eq., 36 (2011), 2011-2047.  doi: 10.1080/03605302.2010.534523.  Google Scholar

[4]

S. N. Armstrong and B. Sirakov, Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities, Ann. della Scuola Normale Super. di Pisa. Classe di scienze, 10 (2011), 711-728.   Google Scholar

[5]

M. BardiA. Cesaroni and L. Rossi, Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control, ESAIM: Control, Optimisation and Calculus of Variations, 22 (2016), 842-861.  doi: 10.1051/cocv/2015033.  Google Scholar

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.  Google Scholar

[8]

I. Capuzzo-Dolcetta and A. Cutrí, Hadamard and Liouville type results for fully nonlinear partial differential inequalities, Comm. Contemp. Math., 5 (2003), 435-448.  doi: 10.1142/S0219199703001014.  Google Scholar

[9]

H. Chen and P. Felmer, On the Liouville Property for fully nonlinear elliptic equations with gradient term, J. Diff. Eq., 255 (2013), 2167-2195.  doi: 10.1016/j.jde.2013.06.009.  Google Scholar

[10]

H. ChenP. Felmer and A. Quaas, Large solution to elliptic equations involving fractional Laplacian, Annales de l'Institut Henri Poincaré, 32 (2015), 1199-1228.  doi: 10.1016/j.anihpc.2014.08.001.  Google Scholar

[11]

H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures, J. Diff. Eq., 257 (2014), 1457-1486.  doi: 10.1016/j.jde.2014.05.012.  Google Scholar

[12]

W. ChenY. Fang and Y. Ray, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.  Google Scholar

[13]

W. Chen and Y. Fang, A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, Adv. Math., 229 (2012), 2835-2867.  doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[14]

W. Chen, X. Cui, Z. Yuan and R. Zhuo, A liouville theorem for the fractional laplacian, arXiv: 1401.7402 (2014). doi: 10.1016/j.na.2014.11.003.  Google Scholar

[15]

A. Cutrí and F. Leoni, On the Liouville Property for fully nonlinear equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 219-245.  doi: 10.1016/S0294-1449(00)00109-8.  Google Scholar

[16]

M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half-space, Comm. Cont. Math., 18 (2016), 1-25.  doi: 10.1142/S0219199715500121.  Google Scholar

[17]

A. Farina and E. Valdinoci, Regularity and rigidity theorems for a class of anisotropic nonlocal operators, Manuscripta Math., (2016).  doi: 10.1007/s00229-016-0875-6.  Google Scholar

[18]

P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional laplacian, Comm. Contem. Math., 16 (2013).  doi: 10.1142/S0219199713500235.  Google Scholar

[19]

P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators, Adv. Math., 226 (2011), 2712-2738.  doi: 10.1016/j.aim.2010.09.023.  Google Scholar

[20]

P. Felmer and A. Quaas, Fundamental solutions and two properties of elliptic maximal and minimal operators, Trans. Amer. Math. Soc., 361 (2009), 5721-5736.  doi: 10.1090/S0002-9947-09-04566-8.  Google Scholar

[21]

P. Felmer and A. Quaas, Fundamental solutions for a class of Isaacs integral operators, Disc. Cont. Dyn. Sys., 30 (2011), 493-508.  doi: 10.3934/dcds.2011.30.493.  Google Scholar

[22]

H. Hajaiej, Variational problems related to some fractional kinetic equations, (2012), arXiv: 1205.1202. Google Scholar

[23]

H. Hajaiej, Existence of minimizers of functionals involving the fractional gradient in the abscence of compactness, symmetry and monotonicity, J. Math. Anal. Appl., 399 (2013), 17-26.  doi: 10.1016/j.jmaa.2012.09.023.  Google Scholar

[24]

R. Servadei and E. Valdinoci, Moutain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[25]

Y. Sire and E. Valdinoci, Fractional laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.  doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[26]

X. Ros-Oton and J. Serra, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Commun. Part. Diff. Eq., 40 (2015), 115-133.  doi: 10.1080/03605302.2014.918144.  Google Scholar

[27]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

show all references

References:
[1]

S. AlarcónJ. García-Melián and A. Quaas, Liouville type theorems for elliptic equations with gradient terms, Milan Journal of Mathematics, 81 (2013), 171-185.  doi: 10.1007/s00032-013-0197-z.  Google Scholar

[2]

S. N. ArmstrongB. Sirakov and C. K. Smart, Fundamental solutions of homogeneous fully nonlinear elliptic equations, Comm. Pure Appl. Math., 64 (2011), 737-777.  doi: 10.1002/cpa.20360.  Google Scholar

[3]

S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Partial Diff. Eq., 36 (2011), 2011-2047.  doi: 10.1080/03605302.2010.534523.  Google Scholar

[4]

S. N. Armstrong and B. Sirakov, Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities, Ann. della Scuola Normale Super. di Pisa. Classe di scienze, 10 (2011), 711-728.   Google Scholar

[5]

M. BardiA. Cesaroni and L. Rossi, Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control, ESAIM: Control, Optimisation and Calculus of Variations, 22 (2016), 842-861.  doi: 10.1051/cocv/2015033.  Google Scholar

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.  Google Scholar

[8]

I. Capuzzo-Dolcetta and A. Cutrí, Hadamard and Liouville type results for fully nonlinear partial differential inequalities, Comm. Contemp. Math., 5 (2003), 435-448.  doi: 10.1142/S0219199703001014.  Google Scholar

[9]

H. Chen and P. Felmer, On the Liouville Property for fully nonlinear elliptic equations with gradient term, J. Diff. Eq., 255 (2013), 2167-2195.  doi: 10.1016/j.jde.2013.06.009.  Google Scholar

[10]

H. ChenP. Felmer and A. Quaas, Large solution to elliptic equations involving fractional Laplacian, Annales de l'Institut Henri Poincaré, 32 (2015), 1199-1228.  doi: 10.1016/j.anihpc.2014.08.001.  Google Scholar

[11]

H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures, J. Diff. Eq., 257 (2014), 1457-1486.  doi: 10.1016/j.jde.2014.05.012.  Google Scholar

[12]

W. ChenY. Fang and Y. Ray, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.  Google Scholar

[13]

W. Chen and Y. Fang, A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, Adv. Math., 229 (2012), 2835-2867.  doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[14]

W. Chen, X. Cui, Z. Yuan and R. Zhuo, A liouville theorem for the fractional laplacian, arXiv: 1401.7402 (2014). doi: 10.1016/j.na.2014.11.003.  Google Scholar

[15]

A. Cutrí and F. Leoni, On the Liouville Property for fully nonlinear equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 219-245.  doi: 10.1016/S0294-1449(00)00109-8.  Google Scholar

[16]

M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half-space, Comm. Cont. Math., 18 (2016), 1-25.  doi: 10.1142/S0219199715500121.  Google Scholar

[17]

A. Farina and E. Valdinoci, Regularity and rigidity theorems for a class of anisotropic nonlocal operators, Manuscripta Math., (2016).  doi: 10.1007/s00229-016-0875-6.  Google Scholar

[18]

P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional laplacian, Comm. Contem. Math., 16 (2013).  doi: 10.1142/S0219199713500235.  Google Scholar

[19]

P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators, Adv. Math., 226 (2011), 2712-2738.  doi: 10.1016/j.aim.2010.09.023.  Google Scholar

[20]

P. Felmer and A. Quaas, Fundamental solutions and two properties of elliptic maximal and minimal operators, Trans. Amer. Math. Soc., 361 (2009), 5721-5736.  doi: 10.1090/S0002-9947-09-04566-8.  Google Scholar

[21]

P. Felmer and A. Quaas, Fundamental solutions for a class of Isaacs integral operators, Disc. Cont. Dyn. Sys., 30 (2011), 493-508.  doi: 10.3934/dcds.2011.30.493.  Google Scholar

[22]

H. Hajaiej, Variational problems related to some fractional kinetic equations, (2012), arXiv: 1205.1202. Google Scholar

[23]

H. Hajaiej, Existence of minimizers of functionals involving the fractional gradient in the abscence of compactness, symmetry and monotonicity, J. Math. Anal. Appl., 399 (2013), 17-26.  doi: 10.1016/j.jmaa.2012.09.023.  Google Scholar

[24]

R. Servadei and E. Valdinoci, Moutain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[25]

Y. Sire and E. Valdinoci, Fractional laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.  doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[26]

X. Ros-Oton and J. Serra, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Commun. Part. Diff. Eq., 40 (2015), 115-133.  doi: 10.1080/03605302.2014.918144.  Google Scholar

[27]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[1]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[2]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[3]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[4]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021004

[5]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[9]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[10]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[11]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[12]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[14]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[15]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[16]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[17]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[18]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[19]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[20]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (88)
  • HTML views (127)
  • Cited by (0)

Other articles
by authors

[Back to Top]