-
Previous Article
Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent
- CPAA Home
- This Issue
-
Next Article
Stochastic spatiotemporal diffusive predator-prey systems
Liouville results for fully nonlinear integral elliptic equations in exterior domains
Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China |
In this paper, we obtain Liouville type theorems both in the whole space and exterior domain in viscosity sense for fully nonlinear elliptic inequality involving nonlocal Pucci's operator. The nonlocal property of the operator, we only have a much weaker comparison principle, compared with the inequality with classical Pucci's operators, which give rise to the difficulties for the Hadamard type property in exterior domain.
References:
[1] |
S. Alarcón, J. García-Melián and A. Quaas,
Liouville type theorems for elliptic equations with gradient terms, Milan Journal of Mathematics, 81 (2013), 171-185.
doi: 10.1007/s00032-013-0197-z. |
[2] |
S. N. Armstrong, B. Sirakov and C. K. Smart,
Fundamental solutions of homogeneous fully nonlinear elliptic equations, Comm. Pure Appl. Math., 64 (2011), 737-777.
doi: 10.1002/cpa.20360. |
[3] |
S. N. Armstrong and B. Sirakov,
Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Partial Diff. Eq., 36 (2011), 2011-2047.
doi: 10.1080/03605302.2010.534523. |
[4] |
S. N. Armstrong and B. Sirakov,
Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities, Ann. della Scuola Normale Super. di Pisa. Classe di scienze, 10 (2011), 711-728.
|
[5] |
M. Bardi, A. Cesaroni and L. Rossi,
Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control, ESAIM: Control, Optimisation and Calculus of Variations, 22 (2016), 842-861.
doi: 10.1051/cocv/2015033. |
[6] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional laplacian, Comm.
Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[7] |
L. Caffarelli and L. Silvestre,
Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.
doi: 10.1002/cpa.20274. |
[8] |
I. Capuzzo-Dolcetta and A. Cutrí,
Hadamard and Liouville type results for fully nonlinear partial differential inequalities, Comm. Contemp. Math., 5 (2003), 435-448.
doi: 10.1142/S0219199703001014. |
[9] |
H. Chen and P. Felmer,
On the Liouville Property for fully nonlinear elliptic equations with gradient term, J. Diff. Eq., 255 (2013), 2167-2195.
doi: 10.1016/j.jde.2013.06.009. |
[10] |
H. Chen, P. Felmer and A. Quaas,
Large solution to elliptic equations involving fractional Laplacian, Annales de l'Institut Henri Poincaré, 32 (2015), 1199-1228.
doi: 10.1016/j.anihpc.2014.08.001. |
[11] |
H. Chen and L. Véron,
Semilinear fractional elliptic equations involving measures, J. Diff. Eq., 257 (2014), 1457-1486.
doi: 10.1016/j.jde.2014.05.012. |
[12] |
W. Chen, Y. Fang and Y. Ray,
Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.
doi: 10.1016/j.aim.2014.12.013. |
[13] |
W. Chen and Y. Fang,
A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, Adv. Math., 229 (2012), 2835-2867.
doi: 10.1016/j.aim.2012.01.018. |
[14] |
W. Chen, X. Cui, Z. Yuan and R. Zhuo, A liouville theorem for the fractional laplacian, arXiv: 1401.7402 (2014).
doi: 10.1016/j.na.2014.11.003. |
[15] |
A. Cutrí and F. Leoni,
On the Liouville Property for fully nonlinear equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 219-245.
doi: 10.1016/S0294-1449(00)00109-8. |
[16] |
M. Fall and T. Weth,
Monotonicity and nonexistence results for some fractional elliptic problems in the half-space, Comm. Cont. Math., 18 (2016), 1-25.
doi: 10.1142/S0219199715500121. |
[17] |
A. Farina and E. Valdinoci,
Regularity and rigidity theorems for a class of anisotropic nonlocal operators, Manuscripta Math., (2016).
doi: 10.1007/s00229-016-0875-6. |
[18] |
P. Felmer and Y. Wang,
Radial symmetry of positive solutions to equations involving the fractional laplacian, Comm. Contem. Math., 16 (2013).
doi: 10.1142/S0219199713500235. |
[19] |
P. Felmer and A. Quaas,
Fundamental solutions and Liouville type theorems for nonlinear integral operators, Adv. Math., 226 (2011), 2712-2738.
doi: 10.1016/j.aim.2010.09.023. |
[20] |
P. Felmer and A. Quaas,
Fundamental solutions and two properties of elliptic maximal and minimal operators, Trans. Amer. Math. Soc., 361 (2009), 5721-5736.
doi: 10.1090/S0002-9947-09-04566-8. |
[21] |
P. Felmer and A. Quaas,
Fundamental solutions for a class of Isaacs integral operators, Disc. Cont. Dyn. Sys., 30 (2011), 493-508.
doi: 10.3934/dcds.2011.30.493. |
[22] |
H. Hajaiej, Variational problems related to some fractional kinetic equations, (2012), arXiv: 1205.1202. Google Scholar |
[23] |
H. Hajaiej,
Existence of minimizers of functionals involving the fractional gradient in the abscence of compactness, symmetry and monotonicity, J. Math. Anal. Appl., 399 (2013), 17-26.
doi: 10.1016/j.jmaa.2012.09.023. |
[24] |
R. Servadei and E. Valdinoci,
Moutain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.
doi: 10.1016/j.jmaa.2011.12.032. |
[25] |
Y. Sire and E. Valdinoci,
Fractional laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.
doi: 10.1016/j.jfa.2009.01.020. |
[26] |
X. Ros-Oton and J. Serra,
Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Commun. Part. Diff. Eq., 40 (2015), 115-133.
doi: 10.1080/03605302.2014.918144. |
[27] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
show all references
References:
[1] |
S. Alarcón, J. García-Melián and A. Quaas,
Liouville type theorems for elliptic equations with gradient terms, Milan Journal of Mathematics, 81 (2013), 171-185.
doi: 10.1007/s00032-013-0197-z. |
[2] |
S. N. Armstrong, B. Sirakov and C. K. Smart,
Fundamental solutions of homogeneous fully nonlinear elliptic equations, Comm. Pure Appl. Math., 64 (2011), 737-777.
doi: 10.1002/cpa.20360. |
[3] |
S. N. Armstrong and B. Sirakov,
Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Partial Diff. Eq., 36 (2011), 2011-2047.
doi: 10.1080/03605302.2010.534523. |
[4] |
S. N. Armstrong and B. Sirakov,
Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities, Ann. della Scuola Normale Super. di Pisa. Classe di scienze, 10 (2011), 711-728.
|
[5] |
M. Bardi, A. Cesaroni and L. Rossi,
Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control, ESAIM: Control, Optimisation and Calculus of Variations, 22 (2016), 842-861.
doi: 10.1051/cocv/2015033. |
[6] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional laplacian, Comm.
Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[7] |
L. Caffarelli and L. Silvestre,
Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.
doi: 10.1002/cpa.20274. |
[8] |
I. Capuzzo-Dolcetta and A. Cutrí,
Hadamard and Liouville type results for fully nonlinear partial differential inequalities, Comm. Contemp. Math., 5 (2003), 435-448.
doi: 10.1142/S0219199703001014. |
[9] |
H. Chen and P. Felmer,
On the Liouville Property for fully nonlinear elliptic equations with gradient term, J. Diff. Eq., 255 (2013), 2167-2195.
doi: 10.1016/j.jde.2013.06.009. |
[10] |
H. Chen, P. Felmer and A. Quaas,
Large solution to elliptic equations involving fractional Laplacian, Annales de l'Institut Henri Poincaré, 32 (2015), 1199-1228.
doi: 10.1016/j.anihpc.2014.08.001. |
[11] |
H. Chen and L. Véron,
Semilinear fractional elliptic equations involving measures, J. Diff. Eq., 257 (2014), 1457-1486.
doi: 10.1016/j.jde.2014.05.012. |
[12] |
W. Chen, Y. Fang and Y. Ray,
Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.
doi: 10.1016/j.aim.2014.12.013. |
[13] |
W. Chen and Y. Fang,
A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, Adv. Math., 229 (2012), 2835-2867.
doi: 10.1016/j.aim.2012.01.018. |
[14] |
W. Chen, X. Cui, Z. Yuan and R. Zhuo, A liouville theorem for the fractional laplacian, arXiv: 1401.7402 (2014).
doi: 10.1016/j.na.2014.11.003. |
[15] |
A. Cutrí and F. Leoni,
On the Liouville Property for fully nonlinear equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 219-245.
doi: 10.1016/S0294-1449(00)00109-8. |
[16] |
M. Fall and T. Weth,
Monotonicity and nonexistence results for some fractional elliptic problems in the half-space, Comm. Cont. Math., 18 (2016), 1-25.
doi: 10.1142/S0219199715500121. |
[17] |
A. Farina and E. Valdinoci,
Regularity and rigidity theorems for a class of anisotropic nonlocal operators, Manuscripta Math., (2016).
doi: 10.1007/s00229-016-0875-6. |
[18] |
P. Felmer and Y. Wang,
Radial symmetry of positive solutions to equations involving the fractional laplacian, Comm. Contem. Math., 16 (2013).
doi: 10.1142/S0219199713500235. |
[19] |
P. Felmer and A. Quaas,
Fundamental solutions and Liouville type theorems for nonlinear integral operators, Adv. Math., 226 (2011), 2712-2738.
doi: 10.1016/j.aim.2010.09.023. |
[20] |
P. Felmer and A. Quaas,
Fundamental solutions and two properties of elliptic maximal and minimal operators, Trans. Amer. Math. Soc., 361 (2009), 5721-5736.
doi: 10.1090/S0002-9947-09-04566-8. |
[21] |
P. Felmer and A. Quaas,
Fundamental solutions for a class of Isaacs integral operators, Disc. Cont. Dyn. Sys., 30 (2011), 493-508.
doi: 10.3934/dcds.2011.30.493. |
[22] |
H. Hajaiej, Variational problems related to some fractional kinetic equations, (2012), arXiv: 1205.1202. Google Scholar |
[23] |
H. Hajaiej,
Existence of minimizers of functionals involving the fractional gradient in the abscence of compactness, symmetry and monotonicity, J. Math. Anal. Appl., 399 (2013), 17-26.
doi: 10.1016/j.jmaa.2012.09.023. |
[24] |
R. Servadei and E. Valdinoci,
Moutain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.
doi: 10.1016/j.jmaa.2011.12.032. |
[25] |
Y. Sire and E. Valdinoci,
Fractional laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.
doi: 10.1016/j.jfa.2009.01.020. |
[26] |
X. Ros-Oton and J. Serra,
Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Commun. Part. Diff. Eq., 40 (2015), 115-133.
doi: 10.1080/03605302.2014.918144. |
[27] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[1] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[2] |
Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020462 |
[3] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[4] |
Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021004 |
[5] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[6] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[7] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[8] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[9] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020383 |
[10] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[11] |
Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030 |
[12] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[13] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[14] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[15] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[16] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[17] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[18] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[19] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[20] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]