January  2018, 17(1): 85-112. doi: 10.3934/cpaa.2018006

Liouville results for fully nonlinear integral elliptic equations in exterior domains

Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China

* Corresponding author

Received  January 2017 Revised  June 2017 Published  September 2017

Fund Project: Y. Wang is supported by NSFC, No: 11661045.

In this paper, we obtain Liouville type theorems both in the whole space and exterior domain in viscosity sense for fully nonlinear elliptic inequality involving nonlocal Pucci's operator. The nonlocal property of the operator, we only have a much weaker comparison principle, compared with the inequality with classical Pucci's operators, which give rise to the difficulties for the Hadamard type property in exterior domain.

Citation: Hongxia Zhang, Ying Wang. Liouville results for fully nonlinear integral elliptic equations in exterior domains. Communications on Pure and Applied Analysis, 2018, 17 (1) : 85-112. doi: 10.3934/cpaa.2018006
References:
[1]

S. AlarcónJ. García-Melián and A. Quaas, Liouville type theorems for elliptic equations with gradient terms, Milan Journal of Mathematics, 81 (2013), 171-185.  doi: 10.1007/s00032-013-0197-z.

[2]

S. N. ArmstrongB. Sirakov and C. K. Smart, Fundamental solutions of homogeneous fully nonlinear elliptic equations, Comm. Pure Appl. Math., 64 (2011), 737-777.  doi: 10.1002/cpa.20360.

[3]

S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Partial Diff. Eq., 36 (2011), 2011-2047.  doi: 10.1080/03605302.2010.534523.

[4]

S. N. Armstrong and B. Sirakov, Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities, Ann. della Scuola Normale Super. di Pisa. Classe di scienze, 10 (2011), 711-728. 

[5]

M. BardiA. Cesaroni and L. Rossi, Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control, ESAIM: Control, Optimisation and Calculus of Variations, 22 (2016), 842-861.  doi: 10.1051/cocv/2015033.

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.

[7]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.

[8]

I. Capuzzo-Dolcetta and A. Cutrí, Hadamard and Liouville type results for fully nonlinear partial differential inequalities, Comm. Contemp. Math., 5 (2003), 435-448.  doi: 10.1142/S0219199703001014.

[9]

H. Chen and P. Felmer, On the Liouville Property for fully nonlinear elliptic equations with gradient term, J. Diff. Eq., 255 (2013), 2167-2195.  doi: 10.1016/j.jde.2013.06.009.

[10]

H. ChenP. Felmer and A. Quaas, Large solution to elliptic equations involving fractional Laplacian, Annales de l'Institut Henri Poincaré, 32 (2015), 1199-1228.  doi: 10.1016/j.anihpc.2014.08.001.

[11]

H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures, J. Diff. Eq., 257 (2014), 1457-1486.  doi: 10.1016/j.jde.2014.05.012.

[12]

W. ChenY. Fang and Y. Ray, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.

[13]

W. Chen and Y. Fang, A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, Adv. Math., 229 (2012), 2835-2867.  doi: 10.1016/j.aim.2012.01.018.

[14]

W. Chen, X. Cui, Z. Yuan and R. Zhuo, A liouville theorem for the fractional laplacian, arXiv: 1401.7402 (2014). doi: 10.1016/j.na.2014.11.003.

[15]

A. Cutrí and F. Leoni, On the Liouville Property for fully nonlinear equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 219-245.  doi: 10.1016/S0294-1449(00)00109-8.

[16]

M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half-space, Comm. Cont. Math., 18 (2016), 1-25.  doi: 10.1142/S0219199715500121.

[17]

A. Farina and E. Valdinoci, Regularity and rigidity theorems for a class of anisotropic nonlocal operators, Manuscripta Math., (2016).  doi: 10.1007/s00229-016-0875-6.

[18]

P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional laplacian, Comm. Contem. Math., 16 (2013).  doi: 10.1142/S0219199713500235.

[19]

P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators, Adv. Math., 226 (2011), 2712-2738.  doi: 10.1016/j.aim.2010.09.023.

[20]

P. Felmer and A. Quaas, Fundamental solutions and two properties of elliptic maximal and minimal operators, Trans. Amer. Math. Soc., 361 (2009), 5721-5736.  doi: 10.1090/S0002-9947-09-04566-8.

[21]

P. Felmer and A. Quaas, Fundamental solutions for a class of Isaacs integral operators, Disc. Cont. Dyn. Sys., 30 (2011), 493-508.  doi: 10.3934/dcds.2011.30.493.

[22]

H. Hajaiej, Variational problems related to some fractional kinetic equations, (2012), arXiv: 1205.1202.

[23]

H. Hajaiej, Existence of minimizers of functionals involving the fractional gradient in the abscence of compactness, symmetry and monotonicity, J. Math. Anal. Appl., 399 (2013), 17-26.  doi: 10.1016/j.jmaa.2012.09.023.

[24]

R. Servadei and E. Valdinoci, Moutain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.

[25]

Y. Sire and E. Valdinoci, Fractional laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.  doi: 10.1016/j.jfa.2009.01.020.

[26]

X. Ros-Oton and J. Serra, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Commun. Part. Diff. Eq., 40 (2015), 115-133.  doi: 10.1080/03605302.2014.918144.

[27]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

show all references

References:
[1]

S. AlarcónJ. García-Melián and A. Quaas, Liouville type theorems for elliptic equations with gradient terms, Milan Journal of Mathematics, 81 (2013), 171-185.  doi: 10.1007/s00032-013-0197-z.

[2]

S. N. ArmstrongB. Sirakov and C. K. Smart, Fundamental solutions of homogeneous fully nonlinear elliptic equations, Comm. Pure Appl. Math., 64 (2011), 737-777.  doi: 10.1002/cpa.20360.

[3]

S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Partial Diff. Eq., 36 (2011), 2011-2047.  doi: 10.1080/03605302.2010.534523.

[4]

S. N. Armstrong and B. Sirakov, Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities, Ann. della Scuola Normale Super. di Pisa. Classe di scienze, 10 (2011), 711-728. 

[5]

M. BardiA. Cesaroni and L. Rossi, Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control, ESAIM: Control, Optimisation and Calculus of Variations, 22 (2016), 842-861.  doi: 10.1051/cocv/2015033.

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.

[7]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.

[8]

I. Capuzzo-Dolcetta and A. Cutrí, Hadamard and Liouville type results for fully nonlinear partial differential inequalities, Comm. Contemp. Math., 5 (2003), 435-448.  doi: 10.1142/S0219199703001014.

[9]

H. Chen and P. Felmer, On the Liouville Property for fully nonlinear elliptic equations with gradient term, J. Diff. Eq., 255 (2013), 2167-2195.  doi: 10.1016/j.jde.2013.06.009.

[10]

H. ChenP. Felmer and A. Quaas, Large solution to elliptic equations involving fractional Laplacian, Annales de l'Institut Henri Poincaré, 32 (2015), 1199-1228.  doi: 10.1016/j.anihpc.2014.08.001.

[11]

H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures, J. Diff. Eq., 257 (2014), 1457-1486.  doi: 10.1016/j.jde.2014.05.012.

[12]

W. ChenY. Fang and Y. Ray, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.

[13]

W. Chen and Y. Fang, A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, Adv. Math., 229 (2012), 2835-2867.  doi: 10.1016/j.aim.2012.01.018.

[14]

W. Chen, X. Cui, Z. Yuan and R. Zhuo, A liouville theorem for the fractional laplacian, arXiv: 1401.7402 (2014). doi: 10.1016/j.na.2014.11.003.

[15]

A. Cutrí and F. Leoni, On the Liouville Property for fully nonlinear equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 219-245.  doi: 10.1016/S0294-1449(00)00109-8.

[16]

M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half-space, Comm. Cont. Math., 18 (2016), 1-25.  doi: 10.1142/S0219199715500121.

[17]

A. Farina and E. Valdinoci, Regularity and rigidity theorems for a class of anisotropic nonlocal operators, Manuscripta Math., (2016).  doi: 10.1007/s00229-016-0875-6.

[18]

P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional laplacian, Comm. Contem. Math., 16 (2013).  doi: 10.1142/S0219199713500235.

[19]

P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators, Adv. Math., 226 (2011), 2712-2738.  doi: 10.1016/j.aim.2010.09.023.

[20]

P. Felmer and A. Quaas, Fundamental solutions and two properties of elliptic maximal and minimal operators, Trans. Amer. Math. Soc., 361 (2009), 5721-5736.  doi: 10.1090/S0002-9947-09-04566-8.

[21]

P. Felmer and A. Quaas, Fundamental solutions for a class of Isaacs integral operators, Disc. Cont. Dyn. Sys., 30 (2011), 493-508.  doi: 10.3934/dcds.2011.30.493.

[22]

H. Hajaiej, Variational problems related to some fractional kinetic equations, (2012), arXiv: 1205.1202.

[23]

H. Hajaiej, Existence of minimizers of functionals involving the fractional gradient in the abscence of compactness, symmetry and monotonicity, J. Math. Anal. Appl., 399 (2013), 17-26.  doi: 10.1016/j.jmaa.2012.09.023.

[24]

R. Servadei and E. Valdinoci, Moutain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.

[25]

Y. Sire and E. Valdinoci, Fractional laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.  doi: 10.1016/j.jfa.2009.01.020.

[26]

X. Ros-Oton and J. Serra, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Commun. Part. Diff. Eq., 40 (2015), 115-133.  doi: 10.1080/03605302.2014.918144.

[27]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[1]

Meng Qu, Ping Li, Liu Yang. Symmetry and monotonicity of solutions for the fully nonlinear nonlocal equation. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1337-1349. doi: 10.3934/cpaa.2020065

[2]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[3]

Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947

[4]

Xiaoming He, Xin Zhao, Wenming Zou. Maximum principles for a fully nonlinear nonlocal equation on unbounded domains. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4387-4399. doi: 10.3934/cpaa.2020200

[5]

Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549

[6]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure and Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[7]

Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865

[8]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, 2021, 29 (5) : 2829-2839. doi: 10.3934/era.2021016

[9]

Xiaomei Chen, Xiaohui Yu. Liouville type theorem for Hartree-Fock Equation on half space. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2079-2100. doi: 10.3934/cpaa.2022050

[10]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[11]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1871-1897. doi: 10.3934/dcdss.2020462

[12]

Yutian Lei. Liouville theorems and classification results for a nonlocal Schrödinger equation. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5351-5377. doi: 10.3934/dcds.2018236

[13]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure and Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[14]

Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

[15]

Xiaohui Yu. Multiplicity solutions for fully nonlinear equation involving nonlinearity with zeros. Communications on Pure and Applied Analysis, 2013, 12 (1) : 451-459. doi: 10.3934/cpaa.2013.12.451

[16]

Claude-Michel Brauner, Josephus Hulshof, Luca Lorenzi, Gregory I. Sivashinsky. A fully nonlinear equation for the flame front in a quasi-steady combustion model. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1415-1446. doi: 10.3934/dcds.2010.27.1415

[17]

Michiel Bertsch, Roberta Dal Passo, Lorenzo Giacomelli, Giuseppe Tomassetti. A nonlocal and fully nonlinear degenerate parabolic system from strain-gradient plasticity. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 15-43. doi: 10.3934/dcdsb.2011.15.15

[18]

Hongwei Wang, Amin Esfahani. On the Cauchy problem for a nonlocal nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022039

[19]

Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086

[20]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (175)
  • HTML views (130)
  • Cited by (0)

Other articles
by authors

[Back to Top]