\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent

  • * Corresponding author

    * Corresponding author
The authors are supported by NSFC grants 11371282 and 11571259.
Abstract Full Text(HTML) Related Papers Cited by
  • This paper is concerned with the existence and multiplicity of solutions to the following Kirchhoff type elliptic equations with critical nonlinearity:

    $ \begin{cases} -(a+b \int_{Ω}|\nabla u|^{2}dx)Δ u=f(x, u)+μ|u|^{4}u &\; \; \mbox{in }Ω, \\ u=0 &\; \; \mbox{on }\partial Ω, \end{cases}$

    where $Ω\subset\mathbb{R}^3$ is a bounded smooth domain, $μ$ is a positive parameter and $f:Ω×\mathbb{R}\to \mathbb{R}$ is a Carathéodory function satisfying some further conditions. Our approach is based on concentration-compactness principle and symmetry mountain pass theorem.

    Mathematics Subject Classification: Primary:35B33, 35J60;Secondary:47J30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 41 (1973), 349-381. 
    [2] C. O. AlvesF. J. S. A. Corra and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93.  doi: 10.1016/j.camwa.2005.01.008.
    [3] C. O. AlvesF. J. S. A. Corra and G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl., 23 (2010), 409-417.  doi: 10.7153/dea-02-25.
    [4] H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.
    [5] G. M. Figueiredo and J. R. Santos Junior, Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth, Differential Integral Equations, 25 (2012), 853-868. 
    [6] G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401 (2013), 706-713.  doi: 10.1016/j.jmaa.2012.12.053.
    [7] C. Heil, A Basis Theory Primer Expanded edition, Applied and Numerical Harmonic Analysis, Birkhäuser, New York, 2011. doi: 10.1007/978-0-8176-4687-5.
    [8] X. M. He and W. M. Zou, Infinitely many positive solutions for Kirchhoff type problems, Nonlinear Anal., 70 (2009), 1407-1414.  doi: 10.1016/j.na.2008.02.021.
    [9] G. KirchhoffMechanik, Teubner, Leipzig, 1883. 
    [10] J. L. Lions, On some questions in boundary value problems of mathematical physics, in Contemporary Development in Continuum Mechanics and Partial Differential Equations, in: North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, New York, 1978, pp. 284-346.
    [11] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoamericana, 1 (1985), 145-201.  doi: 10.4171/RMI/6.
    [12] Z. LiangF. Li and J. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 155-167.  doi: 10.1016/j.anihpc.2013.01.006.
    [13] A. Mao and Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275-1287.  doi: 10.1016/j.na.2008.02.011.
    [14] D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 885-914.  doi: 10.1007/s00030-014-0271-4.
    [15] K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.  doi: 10.1016/j.jde.2005.03.006.
    [16] E. A. B. Silva and M. S. Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 341-358.  doi: 10.1016/S0294-1449(02)00013-6.
    [17] J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212-1222.  doi: 10.1016/j.na.2010.09.061.
    [18] Q. L. XieX. P. Wu and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent, Commun. Pure Appl. Anal., 12 (2013), 2773-2786.  doi: 10.3934/cpaa.2013.12.2773.
    [19] Z. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.  doi: 10.1016/j.jmaa.2005.06.102.
  • 加载中
SHARE

Article Metrics

HTML views(195) PDF downloads(283) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return