This paper is concerned with the Euler equations in the magnetogasdynamics for generalized Chaplygin gas. The global solutions to the Riemann problems of the Euler equations in the magnetogasdynamics for generalized Chaplygin gas are obtained constructively by using phase plane analysis method. The formation of delta shock wave is studied as magnetic field vanishes. The limit behaviors of the Riemann solutions as magnetic field vanishes are also obtained.
Citation: |
[1] | H. J. Cheng and H. C. Yang, Delta shock waves in chromatography equations, J. Math. Anal. Appl., 380 (2011), 475-485. doi: 10.1016/j.jmaa.2011.04.002. |
[2] | G. Q. Chen and H. L. Liu, Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations, SIAM J.Math. Anal., 34 (2003), 925-938. doi: 10.1137/S0036141001399350. |
[3] | S. Chaplygin, On gas jets, Sci. Mem. Moscow Univ. Math. Phys., 21 (1904), 1-121. |
[4] | L. H. Guo, W. C. Sheng and T. Zhang, The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system, Comm. Pure Appl. Anal., 9 (2010), 431-458. doi: 10.3934/cpaa.2010.9.431. |
[5] | Y. B. Hu and W. C. Sheng, The Riemann problem of conservation laws in magnetogasdynamics, Commun.Pure Appl.Anal., 12 (2013), 755-769. doi: 10.3934/cpaa.2013.12.755. |
[6] | T. von Karman, Compressibility effects in aerodynamics, J. Aeronaut. Sci., 8 (1941), 337-365. doi: 10.2514/2.7046. |
[7] | G. Lai, W. C. Sheng and Y. X. Zheng, Simple waves and pressure delta waves for a Chaplygin gas in two-dimensions, Discrete Contin. Dyn. Syst., 31 (2011), 489-523. doi: 10.3934/dcds.2011.31.489. |
[8] | J. Q. Li, Note on the compressible Euler equations with zero temperature, Appl. Math. Lett., 14 (2001), 519-523. doi: 10.1016/S0893-9659(00)00187-7. |
[9] | T. T. Li and T. H. Qin, Physics and Partial Differential Equations (in Chinese), Higher Education Press, 2005. |
[10] | Y. J. Liu and W. H. Sun, Riemann problem and wave interactions in Magnetogasdynamics, J. Math. Anal. Appl., 397 (2013), 454-466. doi: 10.1016/j.jmaa.2012.07.064. |
[11] | R. Singh and L. P. Singh., Solution of the Riemann Problem in magnetogasdynamics, International Journal of Non-Linear Mechanics, 67 (2014), 326-330. doi: 10.1016/j.ijnonlinmec.2014.10.004. |
[12] | T. R. Sekhar and V. D. Sharma, Riemann Problem and elementary wave interactions in isentropic magnetogasdynamics, Nonlinear Anal. Real World Appl., 11 (2010), 619-636. doi: 10.1016/j.nonrwa.2008.10.036. |
[13] | D. Serre, Multidimensional shock interaction for a Chaplygin gas, Arch. Rational Mech. Anal., 191 (2009), 539-577. doi: 10.1007/s00205-008-0110-z. |
[14] | C. Shen, The limits of Riemann solutions to the isentropic magnetogasdynamics, Appl. Math. Lett., 24 (2011), 1124-1129. doi: 10.1016/j.aml.2011.01.038. |
[15] | Z. Shao, Delta shocks and vacuum states for the isentropic magnetogasdynamics equations for Chaplygin gas as pressure and magnetic field vanish, Mathematics, 2015, arXiv: 1503.08382. |
[16] | V. M. Shelkovich, The Riemann problem admitting δ, δ'-shocks, and vacuum states (the vanishing viscosity approach), J. Differential Equations, 231 (2006), 459-500. doi: 10.1016/j.jde.2006.08.003. |
[17] | W. C. Sheng, G. J. Wang and G. Yin, Delta wave and vacuum state for generalized Chaplygin gas dynamics system as pressure vanishes, Nonlinear Anal. Real World Appl., 22 (2015), 115-128. doi: 10.1016/j.nonrwa.2014.08.007. |
[18] | W. C. Sheng and T. Zhang, The Riemann problem for the transportation equations in gas dynamics, Mem. Amer. Math. Soc., 137 (1999), 654. doi: 10.1090/memo/0654. |
[19] | H. S. Tsien, Two dimensional subsonic flow of compressible fluids, J. Aeronaut. Sci., 6 (1939), 399-407. doi: 10.1016/B978-0-12-398277-3.50005-1. |
[20] | D. Tan, T. Zhang and Y. Zheng, Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, J. Differential Equations, 112 (1994), 1-32. doi: 10.1006/jdeq.1994.1093. |
[21] | G. D. Wang, The Riemann problem for one dimensional generalized Chaplygin gas dynamics, J. Math. Anal. Appl., 403 (2013), 434-450. doi: 10.1016/j.jmaa.2013.02.026. |
[22] | G. Yin and W. C. Sheng, Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for polytropic gases, J. Math. Anal. Appl., 12 (2009), 1-12. doi: 10.1016/j.jmaa.2009.01.075. |