• Previous Article
    Stability of standing waves for a nonlinear SchrÖdinger equation under an external magnetic field
  • CPAA Home
  • This Issue
  • Next Article
    The Riemann problem and the limit solutions as magnetic field vanishes to magnetogasdynamics for generalized Chaplygin gas
January  2018, 17(1): 143-161. doi: 10.3934/cpaa.2018009

Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities

1. 

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland

2. 

Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00-956 Warszawa, Poland

* Corresponding author

Received  February 2017 Revised  February 2017 Published  September 2017

Fund Project: The second author was supported by the National Science Centre, Poland (Grant No. 2014/15/D/ST1/03638).

We look for ground state solutions to the following nonlinear Schrödinger equation
$-Δ u + V(x)u = f(x,u)-Γ(x)|u|^{q-2}u\hbox{ on }\mathbb{R}^N,$
where $V=V_{per}+V_{loc}∈ L^{∞}(\mathbb{R}^N)$ is the sum of a periodic potential $V_{per}$ and a localized potential $V_{loc}$, $Γ∈ L^{∞}(\mathbb{R}^N)$ is periodic and $Γ(x)≥ 0$ for a.e. $x∈\mathbb{R}^N$ and $2≤q <2^*$. We assume that $\inf σ(-Δ+V)>0$, where $σ(-Δ+V)$ stands for the spectrum of $-Δ +V$ and $f$ has the subcritical growth but higher than $Γ(x)|u|^{q-2}u$, however the nonlinearity $f(x, u)-Γ(x)|u|^{q-2}u$ may change sign. Although a Nehari-type monotonicity condition for the nonlinearity is not satisfied, we investigate the existence of ground state solutions being minimizers on the Nehari manifold.
Citation: Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (1) : 143-161. doi: 10.3934/cpaa.2018009
References:
[1]

N. Ackermann, Uniform continuity and Brézis-Lieb type splitting for superposition operators in Sobolev space, Advances in Nonlinear Analysis, (2016).  doi: 10.1515/anona-2016-0123.

[2]

S. Alama and Y. Y. Li, On "multibump" bound states for certain semilinear elliptic equations, Indiana Univ. Math. J., 41 (1992), 983-1026.  doi: 10.1512/iumj.1992.41.41052.

[3]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.

[4]

T. Bartsch and J. Mederski, Ground and bound state solutions of semilinear time-harmonic Maxwell equations in a bounded domain, Arch. Rational Mech. Anal., 215 (2015), 283-306.  doi: 10.1007/s00205-014-0778-1.

[5]

T. Bartsch and J. Mederski, Nonlinear time-harmonic Maxwell equations in an anisotropic bounded medium, J. Funct. Anal., 272 (2017), 4304-4333.  doi: 10.1016/j.jfa.2017.02.019.

[6]

J. Belmonte-Beitia and D. Pelinovsky, Bifurcation of gap solitons in periodic potentials with a periodic sign-varying nonlinearity coefficient, Appl. Anal., 89 (2010), 1335-1350.  doi: 10.1080/00036810903330538.

[7]

V. BenciC. R. Grisanti and A. M. Micheletti, Existence and non existence of the ground state solution for the nonlinear Schrödinger equations with $V(∞) = 0$, Topol. Methods in Nonlinear Anal., 26 (2005), 203-219.  doi: 10.12775/TMNA.2005.031.

[8] A. Biswas and S. Konar, Introduction to Non-Kerr Law Optical Solitons, Chapman and Hall, 2006. 
[9]

A. V. BuryakP. Di TrapaniD. V. Skryabin and S. Trillo, Optical solitons due to quadratic nonlinearities: from basic physic to futuristic applications, Physics Reports, 370 (2002), 63-235.  doi: 10.1016/S0370-1573(02)00196-5.

[10]

D. Costa and H. Tehrani, Existence of positive solutions for a class of indefinite elliptic problems in $\mathbb{R}^N$, Cal. Var., 13, 159-189. doi: 10.1007/PL00009927.

[11]

D. Costa and H. Tehrani, Existence and multiplicity results for a class of Schrödinger equations with indefinite nonlinearities, Adv. Differential Equations, 8 (2003), 1319-1340. 

[12]

V. Coti-Zelati and P. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $\mathbb{R}^n$, Comm. Pure Appl. Math., 45 (1992), 1217-1269.  doi: 10.1002/cpa.3160451002.

[13] W. DörflerA. LechleiterM. PlumG. Schneider and C. Wieners, Photonic Crystals: Mathematical Analysis and Numerical Approximation, Springer, Basel, 2012. 
[14]

G. Figueiredo and H. R. Quoirin, Ground states of elliptic problems involving non homogeneous operators, Indiana Univ. Math. J., 65 (2016), 779-795.  doi: 10.1512/iumj.2016.65.5828.

[15]

Q. Guo and J. Mederski, Ground states of nonlinear Schrödinger equations with sum of periodic and inverse-square potentials, J. Differential Equations, 260 (2016), 4180-4202.  doi: 10.1016/j.jde.2015.11.006.

[16]

L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on $\mathbb{R}^N$, Indiana Univ. Math. Journal, 54 (2005), 443-464.  doi: 10.1512/iumj.2005.54.2502.

[17]

P. Kuchment, The mathematics of photonic crystals, Mathematical modeling in optical science, Frontiers Appl. Math. , 22, SIAM, Philadelphia (2001), 207-272.

[18]

Y. LiZ.-Q. Wang and J. Zeng, Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 829-837.  doi: 10.1016/j.anihpc.2006.01.003.

[19]

P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part Ⅰ and Ⅱ, Ann. Inst. H. Poincaré, Anal. Non Liné are., 1 (1984), 109-145; and 223-283. 

[20]

F. Liu and J. Yang, Nontrivial solutions of Schrödinger equations with indefinite nonlinearities, J. Math. Anal. Appl., 334 (2007), 627-645.  doi: 10.1016/j.jmaa.2006.12.054.

[21]

S. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1-9.  doi: 10.1007/s00526-011-0447-2.

[22]

J. Mederski, Solutions to a nonlinear Schrödinger equation with periodic potential and zero on the boundary of the spectrum, Topol. Methods Nonlinear Anal., 46 (2015), 755-771.  doi: 10.12775/TMNA.2015.067.

[23]

J. Mederski, Ground states of a system of nonlinear Schrödinger equations with periodic potentials, Comm. Partial Differential Equations, 41 (2016), 1426-1440.  doi: 10.1080/03605302.2016.1209520.

[24]

A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287.  doi: 10.1007/s00032-005-0047-8.

[25]

A. Pankov, On decay of solutions to nonlinear Schrödinger equations, Proc. Amer. Math. Soc., 136 (2008), 2565-2570.  doi: 10.1090/S0002-9939-08-09484-7.

[26] A. Pankov, Lecture Notes on Schrödinger Equations, Nova Publ., 2007. 
[27]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.

[28]

M. Reed and B. Simon, Methods of Modern Mathematical Physics, Analysis of Operators, Vol. IV, Academic Press, New York, 1978.

[29]

B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), 447-526.  doi: 10.1090/S0273-0979-1982-15041-8.

[30] R. E. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals, Springer, 2003. 
[31] M. Struwe, Variational Methods, Springer, 2008. 
[32]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.  doi: 10.1016/j.jfa.2009.09.013.

[33]

A. Szulkin and T. Weth, The method of Nehari manifold, Handbook of nonconvex analysis and applications, 597-632, Int. Press, Somerville, 2010.

[34]

X. H. Tang, New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation, Advanced Nonlinear Studies, 14 (2014), 361-373.  doi: 10.1515/ans-2014-0208.

[35] M. Willem, Minimax Theorems, Birkhäuser Verlag, 1996.  doi: 10.1007/978-1-4612-4146-1.

show all references

References:
[1]

N. Ackermann, Uniform continuity and Brézis-Lieb type splitting for superposition operators in Sobolev space, Advances in Nonlinear Analysis, (2016).  doi: 10.1515/anona-2016-0123.

[2]

S. Alama and Y. Y. Li, On "multibump" bound states for certain semilinear elliptic equations, Indiana Univ. Math. J., 41 (1992), 983-1026.  doi: 10.1512/iumj.1992.41.41052.

[3]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.

[4]

T. Bartsch and J. Mederski, Ground and bound state solutions of semilinear time-harmonic Maxwell equations in a bounded domain, Arch. Rational Mech. Anal., 215 (2015), 283-306.  doi: 10.1007/s00205-014-0778-1.

[5]

T. Bartsch and J. Mederski, Nonlinear time-harmonic Maxwell equations in an anisotropic bounded medium, J. Funct. Anal., 272 (2017), 4304-4333.  doi: 10.1016/j.jfa.2017.02.019.

[6]

J. Belmonte-Beitia and D. Pelinovsky, Bifurcation of gap solitons in periodic potentials with a periodic sign-varying nonlinearity coefficient, Appl. Anal., 89 (2010), 1335-1350.  doi: 10.1080/00036810903330538.

[7]

V. BenciC. R. Grisanti and A. M. Micheletti, Existence and non existence of the ground state solution for the nonlinear Schrödinger equations with $V(∞) = 0$, Topol. Methods in Nonlinear Anal., 26 (2005), 203-219.  doi: 10.12775/TMNA.2005.031.

[8] A. Biswas and S. Konar, Introduction to Non-Kerr Law Optical Solitons, Chapman and Hall, 2006. 
[9]

A. V. BuryakP. Di TrapaniD. V. Skryabin and S. Trillo, Optical solitons due to quadratic nonlinearities: from basic physic to futuristic applications, Physics Reports, 370 (2002), 63-235.  doi: 10.1016/S0370-1573(02)00196-5.

[10]

D. Costa and H. Tehrani, Existence of positive solutions for a class of indefinite elliptic problems in $\mathbb{R}^N$, Cal. Var., 13, 159-189. doi: 10.1007/PL00009927.

[11]

D. Costa and H. Tehrani, Existence and multiplicity results for a class of Schrödinger equations with indefinite nonlinearities, Adv. Differential Equations, 8 (2003), 1319-1340. 

[12]

V. Coti-Zelati and P. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $\mathbb{R}^n$, Comm. Pure Appl. Math., 45 (1992), 1217-1269.  doi: 10.1002/cpa.3160451002.

[13] W. DörflerA. LechleiterM. PlumG. Schneider and C. Wieners, Photonic Crystals: Mathematical Analysis and Numerical Approximation, Springer, Basel, 2012. 
[14]

G. Figueiredo and H. R. Quoirin, Ground states of elliptic problems involving non homogeneous operators, Indiana Univ. Math. J., 65 (2016), 779-795.  doi: 10.1512/iumj.2016.65.5828.

[15]

Q. Guo and J. Mederski, Ground states of nonlinear Schrödinger equations with sum of periodic and inverse-square potentials, J. Differential Equations, 260 (2016), 4180-4202.  doi: 10.1016/j.jde.2015.11.006.

[16]

L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on $\mathbb{R}^N$, Indiana Univ. Math. Journal, 54 (2005), 443-464.  doi: 10.1512/iumj.2005.54.2502.

[17]

P. Kuchment, The mathematics of photonic crystals, Mathematical modeling in optical science, Frontiers Appl. Math. , 22, SIAM, Philadelphia (2001), 207-272.

[18]

Y. LiZ.-Q. Wang and J. Zeng, Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 829-837.  doi: 10.1016/j.anihpc.2006.01.003.

[19]

P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part Ⅰ and Ⅱ, Ann. Inst. H. Poincaré, Anal. Non Liné are., 1 (1984), 109-145; and 223-283. 

[20]

F. Liu and J. Yang, Nontrivial solutions of Schrödinger equations with indefinite nonlinearities, J. Math. Anal. Appl., 334 (2007), 627-645.  doi: 10.1016/j.jmaa.2006.12.054.

[21]

S. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1-9.  doi: 10.1007/s00526-011-0447-2.

[22]

J. Mederski, Solutions to a nonlinear Schrödinger equation with periodic potential and zero on the boundary of the spectrum, Topol. Methods Nonlinear Anal., 46 (2015), 755-771.  doi: 10.12775/TMNA.2015.067.

[23]

J. Mederski, Ground states of a system of nonlinear Schrödinger equations with periodic potentials, Comm. Partial Differential Equations, 41 (2016), 1426-1440.  doi: 10.1080/03605302.2016.1209520.

[24]

A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287.  doi: 10.1007/s00032-005-0047-8.

[25]

A. Pankov, On decay of solutions to nonlinear Schrödinger equations, Proc. Amer. Math. Soc., 136 (2008), 2565-2570.  doi: 10.1090/S0002-9939-08-09484-7.

[26] A. Pankov, Lecture Notes on Schrödinger Equations, Nova Publ., 2007. 
[27]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.

[28]

M. Reed and B. Simon, Methods of Modern Mathematical Physics, Analysis of Operators, Vol. IV, Academic Press, New York, 1978.

[29]

B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), 447-526.  doi: 10.1090/S0273-0979-1982-15041-8.

[30] R. E. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals, Springer, 2003. 
[31] M. Struwe, Variational Methods, Springer, 2008. 
[32]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.  doi: 10.1016/j.jfa.2009.09.013.

[33]

A. Szulkin and T. Weth, The method of Nehari manifold, Handbook of nonconvex analysis and applications, 597-632, Int. Press, Somerville, 2010.

[34]

X. H. Tang, New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation, Advanced Nonlinear Studies, 14 (2014), 361-373.  doi: 10.1515/ans-2014-0208.

[35] M. Willem, Minimax Theorems, Birkhäuser Verlag, 1996.  doi: 10.1007/978-1-4612-4146-1.
[1]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[2]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[3]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

[4]

Sitong Chen, Wennian Huang, Xianhua Tang. Existence criteria of ground state solutions for Schrödinger-Poisson systems with a vanishing potential. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3055-3066. doi: 10.3934/dcdss.2020339

[5]

Jin-Cai Kang, Xiao-Qi Liu, Chun-Lei Tang. Ground state sign-changing solution for Schrödinger-Poisson system with steep potential well. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022112

[6]

Robert Magnus, Olivier Moschetta. The non-linear Schrödinger equation with non-periodic potential: infinite-bump solutions and non-degeneracy. Communications on Pure and Applied Analysis, 2012, 11 (2) : 587-626. doi: 10.3934/cpaa.2012.11.587

[7]

Xianhua Tang, Sitong Chen. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4973-5002. doi: 10.3934/dcds.2017214

[8]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

[9]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[10]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[11]

Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047

[12]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[13]

César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure and Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535

[14]

Scipio Cuccagna, Masaya Maeda. On weak interaction between a ground state and a trapping potential. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3343-3376. doi: 10.3934/dcds.2015.35.3343

[15]

Qian Shen, Na Wei. Stability of ground state for the Schrödinger-Poisson equation. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2805-2816. doi: 10.3934/jimo.2020095

[16]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure and Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[17]

Georgy L. Alfimov, Pavel P. Kizin, Dmitry A. Zezyulin. Gap solitons for the repulsive Gross-Pitaevskii equation with periodic potential: Coding and method for computation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1207-1229. doi: 10.3934/dcdsb.2017059

[18]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[19]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[20]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (238)
  • HTML views (165)
  • Cited by (7)

Other articles
by authors

[Back to Top]