• Previous Article
    On stability of functional differential equations with rapidly oscillating coefficients
  • CPAA Home
  • This Issue
  • Next Article
    Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term
January  2018, 17(1): 243-265. doi: 10.3934/cpaa.2018015

Hölder regularity for the Moore-Gibson-Thompson equation with infinite delay

1. 

Universidad de Santiago de Chile, Departamento de Matemáticay Ciencia de la Computación, Las Sophoras 173, Estación Central, Santiago, Chile

2. 

BCAM-Basque Center for Applied Mathematics, Mazarredo, 14, E48009 Bilbao, Basque Country, Spain

* Corresponding author

Received  December 2016 Revised  June 2017 Published  September 2017

Fund Project: The first author is supported by the Project POSTDOC DICYT-041633LY at the USACH. The second author is partially supported by CONICYT, under Fondecyt Grant number 1140258 and and CONICYT - PIA - Anillo ACT1416. The third author is supported by the Basque Government through the BERC 2014-2017 program and by Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2013-0323 and GEAGAM, 644202 H2020-MSCA-RISE-2014.

We characterize the well-posedness of a third order in time equation with infinite delay in Hölder spaces, solely in terms of spectral properties concerning the data of the problem. Our analysis includes the case of the linearized Kuznetzov and Westerwelt equations. We show in case of the Laplacian operator the new and surprising fact that for the standard memory kernel $g(t)=\frac{t^{ν-1}}{Γ(ν)}e^{-at}$ the third order problem is ill-posed whenever $0<ν ≤q 1$ and $a$ is inversely proportional to one of the terms of the given model.

Citation: Luciano Abadías, Carlos Lizama, Marina Murillo-Arcila. Hölder regularity for the Moore-Gibson-Thompson equation with infinite delay. Communications on Pure and Applied Analysis, 2018, 17 (1) : 243-265. doi: 10.3934/cpaa.2018015
References:
[1]

F. Alabau-BoussouiraP. Cannarsa and D. Sforza, Decay estimates for second order evolution equations with memory, J. Funct. Anal., 254 (2008), 1342-1372.  doi: 10.1016/j.jfa.2007.09.012.

[2]

D. Araya and C. Lizama, Existence of asymptotically almost automorphic solutions for a third order differential equation, E.J. Qualitative Theory of Diff. Eq., 53 (2012), 1-20. 

[3]

W. ArendtC. J. Batty and S. Bu, Fourier multipliers for Hölder continuous functions and maximal regularity, Studia Math., 160 (2004), 23-51.  doi: 10.4064/sm160-1-2.

[4]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems Second edition, Monographs in Mathematics. 96 Birkhäuser, 2011. doi: 10.1007/978-3-0348-0087-7.

[5]

H. Brézis, Analyse Fonctionnelle Masson, Paris, 1983.

[6]

S. Bu, Well-posedness of second order degenerate differential equations in vector-valued function spaces, Studia Math., 214 (2013), 1-16.  doi: 10.4064/sm214-1-1.

[7]

S. Bu and Y. Fang, Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces, Studia Math., 184 (2008), 103-119.  doi: 10.4064/sm184-2-1.

[8]

S. Bu and G. Cai, Well-posedness of second order degenerate differential equations in Hölder continuous function spaces, Expo. Math., 34 (2016), 223-236.  doi: 10.1016/j.exmath.2015.07.003.

[9]

G. Cai and S. Bu, Periodic solutions of third-order degenerate differential equations in vector-valued functional spaces, Israel J. Math., 212 (2016), 163-188.  doi: 10.1007/s11856-016-1282-0.

[10]

G. Cai and S. Bu, Well-posedness of second order degenerate integrodifferential equations with infinite delay in vector-valued function spaces, Math. Nachr., 289 (2016), 436-451.  doi: 10.1002/mana.201400112.

[11]

A. H. CaixetaI. Lasiecka and V. N. D. Cavalcanti, Global attractors for a third order in time nonlinear dynamics, J. Differential Equations, 261 (2016), 113-147.  doi: 10.1016/j.jde.2016.03.006.

[12]

R. Chill and S. Srivastava, $L_p$-maximal regularity for second order Cauchy problems, Math. Z., 251 (2005), 751-781.  doi: 10.1007/s00209-005-0815-8.

[13]

Ph. Clément and G. Da Prato, Existence and regularity results for an integral equation with infinite delay in a Banach space, Integral Equations and Operator Theory, 11 (1988), 480-500.  doi: 10.1007/BF01199303.

[14]

A. ConejeroC. Lizama and F. Rodenas, Chaotic behaviour of the solutions of the Moore-Gibson-Thomson equation, Appl. Math. Inf. Sci., 9 (2015), 1-16. 

[15]

C. Cuevas and C. Lizama, Well-posedness for a class of flexible structure in Hölder spaces, Math. Probl. Eng., vol, 2009 (2009), 1-13.  doi: 10.1155/2009/358329.

[16]

G. Da Prato and E. Sinestrari, Hölder regularity for non autonomous abstract parabolic equations, Israel J. Math., 42 (1982), 1-19.  doi: 10.1007/BF02765006.

[17]

F. Dell'oroI. Lasiecka and V. Pata, The Moore-Gibson-Thompson equation with memory in the critical case, J. Differential Equations, 261 (2016), 4188-4222.  doi: 10.1016/j.jde.2016.06.025.

[18]

F. Dell'oro and V. Pata, On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity, Appl. Math. Optim. (2016). doi: 10.1007/s00245-016-9365-1.

[19]

B. De Andrade and C. Lizama, Existence of asymptotically almost periodic solutions for damped wave equations, J. Math. Anal. Appl., 382 (2011), 761-771.  doi: 10.1016/j.jmaa.2011.04.078.

[20]

R. Denk, M. Hieber and J. Prüss, $R$-boundedness, Fourier multipliers and problems of elliptic and parabolic type Mem. Amer. Math. Soc. 166 (2003), no. 788. doi: 10.1090/memo/0788.

[21]

R. DenkJ. Prüss and R. Zacher, Maximal $Lp$-regularity of parabolic problems with boundary dynamics of relaxation type, J. Funct. Anal., 255 (2008), 3149-3187.  doi: 10.1016/j.jfa.2008.07.012.

[22]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations Graduate texts in Mathematics. 194 Springer, New York, 2000.

[23]

H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces North-Holland Mathematics Studies, 108, North-Holland, Amsterdam, 1985.

[24]

C. FernándezC. Lizama and V. Poblete, Maximal regularity for flexible structural systems in Lebesgue spaces, Math. Probl. Eng., vol, 2010 (2010), 1-5.  doi: 10.1155/2010/196956.

[25]

C. FernándezC. Lizama and V. Poblete, Regularity of solutions for a third order differential equation in Hilbert spaces, Appl. Math. Comput., 217 (2011), 8522-8533.  doi: 10.1016/j.amc.2011.03.056.

[26]

G. Gorain, Stabilization for the vibrations modeled by the 'standard linear model' of viscoelasticity, Proc. Indian Acad. Sci. (Math. Sci.), 120 (2010), 495-506.  doi: 10.1007/s12044-010-0038-8.

[27]

M. Haase. The Functional Calculus for Sectorial Operators Operator Theory: Advances and Applications, 169. Birkhäuser Verlag, Basel, 2006. doi: 10.1007/3-7643-7698-8.

[28]

B. KaltenbacherI. Lasiecka and R. Marchand, Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybernet., 40 (2011), 971-988. 

[29]

B. KaltenbacherI. Lasiecka and M. K. Pospieszalska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, Math. Models Methods Appl. Sci., 22 (2012), 1-34.  doi: 10.1142/S0218202512500352.

[30]

B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions, Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications. 8th AIMS Conference. Suppl. Vol. Ⅱ, 763-773

[31]

V. Keyantuo and C. Lizama, Hölder continuous solutions for integro-differential equations and maximal regularity, J. Differential Equations, 230 (2006), 634-660.  doi: 10.1016/j.jde.2006.07.018.

[32]

N. T. Lan, On the nonautonomous higher-order Cauchy problems, Differential Integral Equations, 14 (2001), 241-256. 

[33]

I. Lasiecka and X. Wang, Moore-Gibson-Thompson equation with memory, part I: Exponential decay energy, Z. Angew. Math. Phys., (2016), 67-17.  doi: 10.1007/s00033-015-0597-8.

[34]

I. Lasiecka and X. Wang, Moore-Gibson-Thompson equation with memory, part Ⅱ: General decay of energy, J. Differential Equations, 259 (2015), 7610-7635.  doi: 10.1016/j.jde.2015.08.052.

[35]

R. MarchandT. McDevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore-Gibson-Thomson differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability, Math. Methods Appl. Sci., 35 (2012), 1896-1929.  doi: 10.1002/mma.1576.

[36]

S. A. Messaoudi and S.E. Mukiana, Existence and decay solutions to a viscoelastic plate equation, Electr. J. Diff. Equ., 22 (2016), 1-14. 

[37]

F. Neubrander, Well-posedness of higher order abstract Cauchy problems, Trans. Amer. Math. Soc., 295 (1986), 257-290.  doi: 10.2307/2000156.

[38]

J. Prüss, Evolutionary Integral Equations and Applications Monographs in Math. 87 Birkhäuser, 1993. doi: 10.1007/978-3-0348-8570-6.

[39]

J. Prüss, Decay properties for the solutions of a partial differential equation with memory, Arch. Math., 92 (2009), 158-173.  doi: 10.1007/s00013-008-2936-x.

[40]

T. J. Xiao and J. Liang, The Cauchy Problem for Higher-order Abstract Differential Equations Lecture Notes in Mathematics, 1701. Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-540-49479-9.

show all references

References:
[1]

F. Alabau-BoussouiraP. Cannarsa and D. Sforza, Decay estimates for second order evolution equations with memory, J. Funct. Anal., 254 (2008), 1342-1372.  doi: 10.1016/j.jfa.2007.09.012.

[2]

D. Araya and C. Lizama, Existence of asymptotically almost automorphic solutions for a third order differential equation, E.J. Qualitative Theory of Diff. Eq., 53 (2012), 1-20. 

[3]

W. ArendtC. J. Batty and S. Bu, Fourier multipliers for Hölder continuous functions and maximal regularity, Studia Math., 160 (2004), 23-51.  doi: 10.4064/sm160-1-2.

[4]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems Second edition, Monographs in Mathematics. 96 Birkhäuser, 2011. doi: 10.1007/978-3-0348-0087-7.

[5]

H. Brézis, Analyse Fonctionnelle Masson, Paris, 1983.

[6]

S. Bu, Well-posedness of second order degenerate differential equations in vector-valued function spaces, Studia Math., 214 (2013), 1-16.  doi: 10.4064/sm214-1-1.

[7]

S. Bu and Y. Fang, Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces, Studia Math., 184 (2008), 103-119.  doi: 10.4064/sm184-2-1.

[8]

S. Bu and G. Cai, Well-posedness of second order degenerate differential equations in Hölder continuous function spaces, Expo. Math., 34 (2016), 223-236.  doi: 10.1016/j.exmath.2015.07.003.

[9]

G. Cai and S. Bu, Periodic solutions of third-order degenerate differential equations in vector-valued functional spaces, Israel J. Math., 212 (2016), 163-188.  doi: 10.1007/s11856-016-1282-0.

[10]

G. Cai and S. Bu, Well-posedness of second order degenerate integrodifferential equations with infinite delay in vector-valued function spaces, Math. Nachr., 289 (2016), 436-451.  doi: 10.1002/mana.201400112.

[11]

A. H. CaixetaI. Lasiecka and V. N. D. Cavalcanti, Global attractors for a third order in time nonlinear dynamics, J. Differential Equations, 261 (2016), 113-147.  doi: 10.1016/j.jde.2016.03.006.

[12]

R. Chill and S. Srivastava, $L_p$-maximal regularity for second order Cauchy problems, Math. Z., 251 (2005), 751-781.  doi: 10.1007/s00209-005-0815-8.

[13]

Ph. Clément and G. Da Prato, Existence and regularity results for an integral equation with infinite delay in a Banach space, Integral Equations and Operator Theory, 11 (1988), 480-500.  doi: 10.1007/BF01199303.

[14]

A. ConejeroC. Lizama and F. Rodenas, Chaotic behaviour of the solutions of the Moore-Gibson-Thomson equation, Appl. Math. Inf. Sci., 9 (2015), 1-16. 

[15]

C. Cuevas and C. Lizama, Well-posedness for a class of flexible structure in Hölder spaces, Math. Probl. Eng., vol, 2009 (2009), 1-13.  doi: 10.1155/2009/358329.

[16]

G. Da Prato and E. Sinestrari, Hölder regularity for non autonomous abstract parabolic equations, Israel J. Math., 42 (1982), 1-19.  doi: 10.1007/BF02765006.

[17]

F. Dell'oroI. Lasiecka and V. Pata, The Moore-Gibson-Thompson equation with memory in the critical case, J. Differential Equations, 261 (2016), 4188-4222.  doi: 10.1016/j.jde.2016.06.025.

[18]

F. Dell'oro and V. Pata, On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity, Appl. Math. Optim. (2016). doi: 10.1007/s00245-016-9365-1.

[19]

B. De Andrade and C. Lizama, Existence of asymptotically almost periodic solutions for damped wave equations, J. Math. Anal. Appl., 382 (2011), 761-771.  doi: 10.1016/j.jmaa.2011.04.078.

[20]

R. Denk, M. Hieber and J. Prüss, $R$-boundedness, Fourier multipliers and problems of elliptic and parabolic type Mem. Amer. Math. Soc. 166 (2003), no. 788. doi: 10.1090/memo/0788.

[21]

R. DenkJ. Prüss and R. Zacher, Maximal $Lp$-regularity of parabolic problems with boundary dynamics of relaxation type, J. Funct. Anal., 255 (2008), 3149-3187.  doi: 10.1016/j.jfa.2008.07.012.

[22]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations Graduate texts in Mathematics. 194 Springer, New York, 2000.

[23]

H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces North-Holland Mathematics Studies, 108, North-Holland, Amsterdam, 1985.

[24]

C. FernándezC. Lizama and V. Poblete, Maximal regularity for flexible structural systems in Lebesgue spaces, Math. Probl. Eng., vol, 2010 (2010), 1-5.  doi: 10.1155/2010/196956.

[25]

C. FernándezC. Lizama and V. Poblete, Regularity of solutions for a third order differential equation in Hilbert spaces, Appl. Math. Comput., 217 (2011), 8522-8533.  doi: 10.1016/j.amc.2011.03.056.

[26]

G. Gorain, Stabilization for the vibrations modeled by the 'standard linear model' of viscoelasticity, Proc. Indian Acad. Sci. (Math. Sci.), 120 (2010), 495-506.  doi: 10.1007/s12044-010-0038-8.

[27]

M. Haase. The Functional Calculus for Sectorial Operators Operator Theory: Advances and Applications, 169. Birkhäuser Verlag, Basel, 2006. doi: 10.1007/3-7643-7698-8.

[28]

B. KaltenbacherI. Lasiecka and R. Marchand, Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybernet., 40 (2011), 971-988. 

[29]

B. KaltenbacherI. Lasiecka and M. K. Pospieszalska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, Math. Models Methods Appl. Sci., 22 (2012), 1-34.  doi: 10.1142/S0218202512500352.

[30]

B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions, Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications. 8th AIMS Conference. Suppl. Vol. Ⅱ, 763-773

[31]

V. Keyantuo and C. Lizama, Hölder continuous solutions for integro-differential equations and maximal regularity, J. Differential Equations, 230 (2006), 634-660.  doi: 10.1016/j.jde.2006.07.018.

[32]

N. T. Lan, On the nonautonomous higher-order Cauchy problems, Differential Integral Equations, 14 (2001), 241-256. 

[33]

I. Lasiecka and X. Wang, Moore-Gibson-Thompson equation with memory, part I: Exponential decay energy, Z. Angew. Math. Phys., (2016), 67-17.  doi: 10.1007/s00033-015-0597-8.

[34]

I. Lasiecka and X. Wang, Moore-Gibson-Thompson equation with memory, part Ⅱ: General decay of energy, J. Differential Equations, 259 (2015), 7610-7635.  doi: 10.1016/j.jde.2015.08.052.

[35]

R. MarchandT. McDevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore-Gibson-Thomson differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability, Math. Methods Appl. Sci., 35 (2012), 1896-1929.  doi: 10.1002/mma.1576.

[36]

S. A. Messaoudi and S.E. Mukiana, Existence and decay solutions to a viscoelastic plate equation, Electr. J. Diff. Equ., 22 (2016), 1-14. 

[37]

F. Neubrander, Well-posedness of higher order abstract Cauchy problems, Trans. Amer. Math. Soc., 295 (1986), 257-290.  doi: 10.2307/2000156.

[38]

J. Prüss, Evolutionary Integral Equations and Applications Monographs in Math. 87 Birkhäuser, 1993. doi: 10.1007/978-3-0348-8570-6.

[39]

J. Prüss, Decay properties for the solutions of a partial differential equation with memory, Arch. Math., 92 (2009), 158-173.  doi: 10.1007/s00013-008-2936-x.

[40]

T. J. Xiao and J. Liang, The Cauchy Problem for Higher-order Abstract Differential Equations Lecture Notes in Mathematics, 1701. Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-540-49479-9.

Figure 1.  Example of a parametric plot (${\mathfrak R}{\mathfrak e}\, \beta_2(\eta), {\mathfrak I}{\mathfrak m}\,\beta_2(\eta)$)
Figure 2.  Example of a parametric plot (${\mathfrak R}{\mathfrak e}\, \beta_3(\eta), {\mathfrak I}{\mathfrak m}\,\beta_3(\eta)$)
[1]

Arthur Henrique Caixeta, Irena Lasiecka, Valéria Neves Domingos Cavalcanti. On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation. Evolution Equations and Control Theory, 2016, 5 (4) : 661-676. doi: 10.3934/eect.2016024

[2]

Marta Pellicer, Joan Solà-Morales. Optimal scalar products in the Moore-Gibson-Thompson equation. Evolution Equations and Control Theory, 2019, 8 (1) : 203-220. doi: 10.3934/eect.2019011

[3]

Hizia Bounadja, Belkacem Said Houari. Decay rates for the Moore-Gibson-Thompson equation with memory. Evolution Equations and Control Theory, 2021, 10 (3) : 431-460. doi: 10.3934/eect.2020074

[4]

Wenjun Liu, Zhijing Chen, Zhiyu Tu. New general decay result for a fourth-order Moore-Gibson-Thompson equation with memory. Electronic Research Archive, 2020, 28 (1) : 433-457. doi: 10.3934/era.2020025

[5]

Belkacem Said-Houari. Global well-posedness of the Cauchy problem for the Jordan–Moore–Gibson–Thompson equation with arbitrarily large higher-order Sobolev norms. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022066

[6]

Sen Ming, Han Yang, Xiongmei Fan. Formation of singularities of solutions to the Cauchy problem for semilinear Moore-Gibson-Thompson equations. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1773-1792. doi: 10.3934/cpaa.2022046

[7]

Wenhui Chen, Alessandro Palmieri. Nonexistence of global solutions for the semilinear Moore – Gibson – Thompson equation in the conservative case. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5513-5540. doi: 10.3934/dcds.2020236

[8]

Wenhui Chen, Alessandro Palmieri. A blow – up result for the semilinear Moore – Gibson – Thompson equation with nonlinearity of derivative type in the conservative case. Evolution Equations and Control Theory, 2021, 10 (4) : 673-687. doi: 10.3934/eect.2020085

[9]

Qi Lü, Xu Zhang. Operator-valued backward stochastic Lyapunov equations in infinite dimensions, and its application. Mathematical Control and Related Fields, 2018, 8 (1) : 337-381. doi: 10.3934/mcrf.2018014

[10]

Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations and Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017

[11]

Yury Arlinskiĭ, Eduard Tsekanovskiĭ. Constant J-unitary factor and operator-valued transfer functions. Conference Publications, 2003, 2003 (Special) : 48-56. doi: 10.3934/proc.2003.2003.48

[12]

Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022

[13]

Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure and Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457

[14]

Justin Forlano. Almost sure global well posedness for the BBM equation with infinite $ L^{2} $ initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 267-318. doi: 10.3934/dcds.2020011

[15]

Jiecheng Chen, Dashan Fan, Lijing Sun. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 467-485. doi: 10.3934/dcds.2012.32.467

[16]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations and Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[17]

Hartmut Pecher. Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3303-3321. doi: 10.3934/cpaa.2020146

[18]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[19]

Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036

[20]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (279)
  • HTML views (130)
  • Cited by (3)

[Back to Top]