
-
Previous Article
Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions
- CPAA Home
- This Issue
-
Next Article
Hölder regularity for the Moore-Gibson-Thompson equation with infinite delay
On stability of functional differential equations with rapidly oscillating coefficients
1. | Department of Nonlinear Oscillations, Voronezh State University, 1, Universitetskaya Square, Voronezh 394018, Russia |
2. | Department of Applied Mathematics and Mechanics, Voronezh State Technical University, 14, Mos-cow Avenue, Voronezh 394026, Russia |
$\begin{equation*} y'(t)+∈t_0^{∞}μ_0(ds)\, y(t-s)+\sum_{k=1}^∞ e^{iω_kt}∈t_0^{∞}μ_k(ds)\, y(t-s)=f(t), \end{equation*}$ |
$y$ |
$f$ |
$ω_k∈\mathbb{R}$ |
$μ_k$ |
$[0, +∞)$ |
$\sum_{k=1}^∞\Vertμ_k\Vert < ∞$ |
$y'(t)+\int{{_0^{∞}}}μ_0(ds)\, y(t-s)=f(t)$ |
$|ω_k|$ |
References:
[1] |
N. Bourbaki,
Éléments de mathématique. Fasc. XXXII. Théories spectrales. Chapitre I: Algébres normées. Chapitre II: Groupes localement compacts commutatifs Actualités Scientifiques et Industrielles, No. 1332, Hermann, Paris, 1967 (in French). |
[2] |
N. Bourbaki, Éléments de mathématique. Premi`ere partie. Les structures fondamentales de
l’analyse. Livre VI. Intégration., Hermann, Paris, Chapitres 1-4, 1965 (in French); English
translation in Springer-Verlag, Berlin, Chapters 1-4, 2004. |
[3] |
A. Defant and K. Floret,
Tensor Norms and Operator Ideals, vol. 176 of North-Holland Mathematics Studies, vol. 176 of North-Holland
Mathematics Studies, North-Holland, Amsterdam-London{New York-Tokyo, (1993).
|
[4] |
C. Desoer and M. Vidyasagar,
Feedback Systems: Input-output Properties, Academic Press,
New York{London, (1975).
|
[5] |
J. J. F. Fournier and J. Stewart,
Amalgams of $L^p$ and $l^q$, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 1-21.
doi: 10.1090/S0273-0979-1985-15350-9. |
[6] |
M. Gil',
Stability of functional differential equations with oscillating coefficients and distributed delays, Differential Equations and Applications, 3 (2011), 11-19.
doi: 10.7153/dea-03-02. |
[7] |
M. Gil',
Stability of vector functional differential equations with oscillating coefficients, Journal of Advanced Research in Dynamical and Control Systems, 3 (2011), 26-33.
|
[8] |
R. E. Greene and S. G. Krantz,
Function Theory of One Complex Variable vol. 40 of Graduate Studies in Mathematics 3rd edition, Amer. Math. Soc. , Providence, RI, 2006.
doi: 10.1090/gsm/040. |
[9] |
J. K. Hale and S. M. Verduyn Lunel,
Averaging in infinite dimensions, Journal of Integral Equations and Applications, 2 (1990), 463-494.
doi: 10.1216/jiea/1181075583. |
[10] |
J. K. Hale and S. M. Verduyn Lunel,
Introduction to Functional Differential Equations vol. 99 of Applied Mathematical Sciences, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[11] |
N. Higham,
Stable iterations for the matrix square root, Numerical Algorithms, 15 (1997), 227-242.
doi: 10.1023/A:1019150005407. |
[12] |
E. Hille and R. S. Phillips,
Functional Analysis and Semi-groups vol. 31 of American Mathematical Society Colloquium Publications, Amer. Math. Soc. , Providence, Rhode Island, 1957. |
[13] |
Y. Hino, S. Murakami and T. Naito,
Functional-differential Equations with Infinite Delay vol. 1473 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1991.
doi: 10.1007/BFb0084432. |
[14] |
T. Kaczorek and K. Rogowski,
Fractional Linear Systems and Electrical Circuits, vol. 13 of Studies in Systems, Decision and Control, vol. 13
of Studies in Systems, Decision and Control, Springer, Heidelberg-New York-Dordrecht-
London, (2015).
|
[15] |
V. Kolmanovskii and A. Myshkis,
Introduction to The Theory and Applications of Functional Differential Equations vol. 463 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1999.
doi: 10.1007/978-94-017-1965-0. |
[16] |
N. M. Krylov and N. N. Bogoliubov,
Introduction to Nonlinear Mechanics Princeton University Press, Princeton, 1949. |
[17] |
V. G. Kurbatov,
Functional Differential Operators and Equations vol. 473 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1999. |
[18] |
V. G. Kurbatov, Efficient estimation in the averaging principle, Avtomatika i Telemekhanika,
8, 50-55 (in Russian); English translation in Automation and Remote Control, 50 (1989),
1040{1045. |
[19] |
V. G. Kurbatov, The effect of rapidly oscillating feedbacks on stability, Doklady Akademii
Nauk SSSR, 316 (1991), 558-561 (in Russian); English translation in Doklady Mathematics,
36 (1991), 20-22. |
[20] |
V. G. Kurbatov and I. S. Frolov,
An operator variant of the maximum principle, Mat. Zametki, 36 (1984), 531-535.
|
[21] |
S. Kwapień,
Isomorphic characterization of inner product spaces by orthogonal series with vector valued coefficients, Studia Math., 44 (1972), 583-595.
|
[22] |
M. Lakrib and T. Sari,
Time averaging for ordinary differential equations and retarded functional differential equations, Electronic Journal of Differential Equations, 2010 (2010), 1-24.
|
[23] |
B. Lehman,
The influence of delays when averaging slow and fast oscillating systems: overview, IMA Journal of Mathematical Control and Information, 19 (2002), 201-215.
|
[24] |
J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications.
Vol. I, vol. Band 181 of Die Grundlehren der mathematischen Wissenschaften, Springer-
Verlag, Berlin-Heidelberg-New York, 1972, Translated from French. |
[25] |
R. Ortega, J. Perez, P. Nicklasson and H. Sira-Ramirez,
Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications Communications and Control Engineering, Springer-Verlag, London, 1998. |
[26] |
W. Rudin,
Functional Analysis 2nd edition, International Series in Pure and Applied Mathematics, McGraw-Hill Inc. , New York, 1991. |
[27] |
S. G. Samko, A. A. Kilbas and O. I. Marichev,
Fractional Integrals and Derivatives Nauka i Tekhnika, Minsk, 1987 (in Russian); English translation in Gordon and Breach Science Publishers, Yverdon, 1993. |
[28] |
J. A. Sanders, F. Verhulst and J. A. Murdock,
Averaging Methods in Nonlinear Dynamical Systems vol. 59 of Applied Mathematical Sciences, 2nd edition, Springer, New York, 2007. |
[29] |
L. Schwartz,
Théorie des distributions á valeurs vectorielles. I, Ann. Inst. Fourier. Grenoble, 7 (1957), 1-141.
|
[30] |
L. Schwartz,
Théorie des distributions á valeurs vectorielles. II, Ann. Inst. Fourier. Grenoble, 8 (1958), 1-209.
|
[31] |
L. Schwartz,
Théorie des distributions Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966. |
[32] |
R. L. Stratonovich,
Conditional Markov Processes and Their Application to The Theory of Optimal Control Moscow State University, Moscow, 1966 (in Russian); English translation in American Elsevier, New York, 1968. |
[33] |
A. van der Schaft,
$L_2$-gain and Passivity Techniques in Nonlinear Control, vol. 218 of Lecture Notes in Control and Information Sciences, Springer{Verlag, Berlin{Heidelberg{New Yor, (1996).
doi: 10.1007/3-540-76074-1. |
[34] |
V. S. Vladimirov,
Generalized Functions in Mathematical Physics Mir Publishers, Moscow, 1979; Translated from the second Russian edition. |
[35] |
J. C. Willems,
The Analysis of Feedback Systems The MIT Press, Cambridge, 1971. |
[36] |
P. P. Zabreiko and O. M. Petrova, Theorem on the continuation of bounded solutions for differential equations and the averaging principle, Sibirskii Matematicheskii Zhurnal, 21 (1980),
50-61 (in Russian); English translation in Siberian Mathematical Journal, 21 (1980), 517-526. |
show all references
References:
[1] |
N. Bourbaki,
Éléments de mathématique. Fasc. XXXII. Théories spectrales. Chapitre I: Algébres normées. Chapitre II: Groupes localement compacts commutatifs Actualités Scientifiques et Industrielles, No. 1332, Hermann, Paris, 1967 (in French). |
[2] |
N. Bourbaki, Éléments de mathématique. Premi`ere partie. Les structures fondamentales de
l’analyse. Livre VI. Intégration., Hermann, Paris, Chapitres 1-4, 1965 (in French); English
translation in Springer-Verlag, Berlin, Chapters 1-4, 2004. |
[3] |
A. Defant and K. Floret,
Tensor Norms and Operator Ideals, vol. 176 of North-Holland Mathematics Studies, vol. 176 of North-Holland
Mathematics Studies, North-Holland, Amsterdam-London{New York-Tokyo, (1993).
|
[4] |
C. Desoer and M. Vidyasagar,
Feedback Systems: Input-output Properties, Academic Press,
New York{London, (1975).
|
[5] |
J. J. F. Fournier and J. Stewart,
Amalgams of $L^p$ and $l^q$, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 1-21.
doi: 10.1090/S0273-0979-1985-15350-9. |
[6] |
M. Gil',
Stability of functional differential equations with oscillating coefficients and distributed delays, Differential Equations and Applications, 3 (2011), 11-19.
doi: 10.7153/dea-03-02. |
[7] |
M. Gil',
Stability of vector functional differential equations with oscillating coefficients, Journal of Advanced Research in Dynamical and Control Systems, 3 (2011), 26-33.
|
[8] |
R. E. Greene and S. G. Krantz,
Function Theory of One Complex Variable vol. 40 of Graduate Studies in Mathematics 3rd edition, Amer. Math. Soc. , Providence, RI, 2006.
doi: 10.1090/gsm/040. |
[9] |
J. K. Hale and S. M. Verduyn Lunel,
Averaging in infinite dimensions, Journal of Integral Equations and Applications, 2 (1990), 463-494.
doi: 10.1216/jiea/1181075583. |
[10] |
J. K. Hale and S. M. Verduyn Lunel,
Introduction to Functional Differential Equations vol. 99 of Applied Mathematical Sciences, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[11] |
N. Higham,
Stable iterations for the matrix square root, Numerical Algorithms, 15 (1997), 227-242.
doi: 10.1023/A:1019150005407. |
[12] |
E. Hille and R. S. Phillips,
Functional Analysis and Semi-groups vol. 31 of American Mathematical Society Colloquium Publications, Amer. Math. Soc. , Providence, Rhode Island, 1957. |
[13] |
Y. Hino, S. Murakami and T. Naito,
Functional-differential Equations with Infinite Delay vol. 1473 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1991.
doi: 10.1007/BFb0084432. |
[14] |
T. Kaczorek and K. Rogowski,
Fractional Linear Systems and Electrical Circuits, vol. 13 of Studies in Systems, Decision and Control, vol. 13
of Studies in Systems, Decision and Control, Springer, Heidelberg-New York-Dordrecht-
London, (2015).
|
[15] |
V. Kolmanovskii and A. Myshkis,
Introduction to The Theory and Applications of Functional Differential Equations vol. 463 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1999.
doi: 10.1007/978-94-017-1965-0. |
[16] |
N. M. Krylov and N. N. Bogoliubov,
Introduction to Nonlinear Mechanics Princeton University Press, Princeton, 1949. |
[17] |
V. G. Kurbatov,
Functional Differential Operators and Equations vol. 473 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1999. |
[18] |
V. G. Kurbatov, Efficient estimation in the averaging principle, Avtomatika i Telemekhanika,
8, 50-55 (in Russian); English translation in Automation and Remote Control, 50 (1989),
1040{1045. |
[19] |
V. G. Kurbatov, The effect of rapidly oscillating feedbacks on stability, Doklady Akademii
Nauk SSSR, 316 (1991), 558-561 (in Russian); English translation in Doklady Mathematics,
36 (1991), 20-22. |
[20] |
V. G. Kurbatov and I. S. Frolov,
An operator variant of the maximum principle, Mat. Zametki, 36 (1984), 531-535.
|
[21] |
S. Kwapień,
Isomorphic characterization of inner product spaces by orthogonal series with vector valued coefficients, Studia Math., 44 (1972), 583-595.
|
[22] |
M. Lakrib and T. Sari,
Time averaging for ordinary differential equations and retarded functional differential equations, Electronic Journal of Differential Equations, 2010 (2010), 1-24.
|
[23] |
B. Lehman,
The influence of delays when averaging slow and fast oscillating systems: overview, IMA Journal of Mathematical Control and Information, 19 (2002), 201-215.
|
[24] |
J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications.
Vol. I, vol. Band 181 of Die Grundlehren der mathematischen Wissenschaften, Springer-
Verlag, Berlin-Heidelberg-New York, 1972, Translated from French. |
[25] |
R. Ortega, J. Perez, P. Nicklasson and H. Sira-Ramirez,
Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications Communications and Control Engineering, Springer-Verlag, London, 1998. |
[26] |
W. Rudin,
Functional Analysis 2nd edition, International Series in Pure and Applied Mathematics, McGraw-Hill Inc. , New York, 1991. |
[27] |
S. G. Samko, A. A. Kilbas and O. I. Marichev,
Fractional Integrals and Derivatives Nauka i Tekhnika, Minsk, 1987 (in Russian); English translation in Gordon and Breach Science Publishers, Yverdon, 1993. |
[28] |
J. A. Sanders, F. Verhulst and J. A. Murdock,
Averaging Methods in Nonlinear Dynamical Systems vol. 59 of Applied Mathematical Sciences, 2nd edition, Springer, New York, 2007. |
[29] |
L. Schwartz,
Théorie des distributions á valeurs vectorielles. I, Ann. Inst. Fourier. Grenoble, 7 (1957), 1-141.
|
[30] |
L. Schwartz,
Théorie des distributions á valeurs vectorielles. II, Ann. Inst. Fourier. Grenoble, 8 (1958), 1-209.
|
[31] |
L. Schwartz,
Théorie des distributions Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966. |
[32] |
R. L. Stratonovich,
Conditional Markov Processes and Their Application to The Theory of Optimal Control Moscow State University, Moscow, 1966 (in Russian); English translation in American Elsevier, New York, 1968. |
[33] |
A. van der Schaft,
$L_2$-gain and Passivity Techniques in Nonlinear Control, vol. 218 of Lecture Notes in Control and Information Sciences, Springer{Verlag, Berlin{Heidelberg{New Yor, (1996).
doi: 10.1007/3-540-76074-1. |
[34] |
V. S. Vladimirov,
Generalized Functions in Mathematical Physics Mir Publishers, Moscow, 1979; Translated from the second Russian edition. |
[35] |
J. C. Willems,
The Analysis of Feedback Systems The MIT Press, Cambridge, 1971. |
[36] |
P. P. Zabreiko and O. M. Petrova, Theorem on the continuation of bounded solutions for differential equations and the averaging principle, Sibirskii Matematicheskii Zhurnal, 21 (1980),
50-61 (in Russian); English translation in Siberian Mathematical Journal, 21 (1980), 517-526. |

[1] |
Chun-Gil Park. Stability of a linear functional equation in Banach modules. Conference Publications, 2003, 2003 (Special) : 694-700. doi: 10.3934/proc.2003.2003.694 |
[2] |
David Cheban, Zhenxin Liu. Averaging principle on infinite intervals for stochastic ordinary differential equations. Electronic Research Archive, 2021, 29 (4) : 2791-2817. doi: 10.3934/era.2021014 |
[3] |
Peng Gao. Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5649-5684. doi: 10.3934/dcds.2018247 |
[4] |
Osama Moaaz, Omar Bazighifan. Oscillation criteria for second-order quasi-linear neutral functional differential equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2465-2473. doi: 10.3934/dcdss.2020136 |
[5] |
Joseph M. Mahaffy, Timothy C. Busken. Regions of stability for a linear differential equation with two rationally dependent delays. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4955-4986. doi: 10.3934/dcds.2015.35.4955 |
[6] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[7] |
Peng Gao, Yong Li. Averaging principle for the Schrödinger equations†. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2147-2168. doi: 10.3934/dcdsb.2017089 |
[8] |
Xiaobin Sun, Jianliang Zhai. Averaging principle for stochastic real Ginzburg-Landau equation driven by $ \alpha $-stable process. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1291-1319. doi: 10.3934/cpaa.2020063 |
[9] |
Murat Arcak, Eduardo D. Sontag. A passivity-based stability criterion for a class of biochemical reaction networks. Mathematical Biosciences & Engineering, 2008, 5 (1) : 1-19. doi: 10.3934/mbe.2008.5.1 |
[10] |
Liming Wang. A passivity-based stability criterion for reaction diffusion systems with interconnected structure. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 303-323. doi: 10.3934/dcdsb.2012.17.303 |
[11] |
Pietro-Luciano Buono, V.G. LeBlanc. Equivariant versal unfoldings for linear retarded functional differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 283-302. doi: 10.3934/dcds.2005.12.283 |
[12] |
Kai Liu. On regularity of stochastic convolutions of functional linear differential equations with memory. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1279-1298. doi: 10.3934/dcdsb.2019220 |
[13] |
Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3953-3965. doi: 10.3934/dcdsb.2017203 |
[14] |
Ferenc Hartung, Janos Turi. Linearized stability in functional differential equations with state-dependent delays. Conference Publications, 2001, 2001 (Special) : 416-425. doi: 10.3934/proc.2001.2001.416 |
[15] |
Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169 |
[16] |
Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361 |
[17] |
Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099 |
[18] |
S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604 |
[19] |
Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321 |
[20] |
Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]