We consider a predator-prey system with a ratio-dependent functional response when a prey population is infected. First, we examine the global attractor and persistence properties of the time-dependent system. The existence of nonconstant positive steady-states are studied under Neumann boundary conditions in terms of the diffusion effect; namely, pattern formations, arising from diffusion-driven instability, are investigated. A comparison principle for the parabolic problem and the Leray-Schauder index theory are employed for analysis.
Citation: |
[1] |
R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: ratio dependence, J. Theor. Biol., 139 (1989), 311-326.
doi: 10.1016/S0022-5193(89)80211-5.![]() ![]() |
[2] |
R. Arditi, L. R. Ginzburg and H. R. Akcakaya, Variation in plankton densities among lakes: a case for ratio-dependent
models, American Naturalist, 138 (1991), 1287-1296.
![]() |
[3] |
R. Arditi and H. Saiah, Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 73 (1992), 1544-1551.
doi: 10.2307/1940007.![]() ![]() |
[4] |
O. Arino, A. El. abdllaoui, J. Mikram and J. Chattopadhyay, Infection in prey population may act as a
biological control in raito-dependent predator-prey models, Nonlinearity, 17 (2004), 1101-1116.
doi: 10.1088/0951-7715/17/3/018.![]() ![]() ![]() |
[5] |
E. Beltrami and T. Carroll, Modelling the role of viral disease in recurrent phytoplankton blooms, J. Math. Biol., 32 (1994), 857-863.
doi: 10.1007/BF00168802.![]() ![]() |
[6] |
R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional
response, J. Math. Anal. Appl., 257 (2001), 206-222.
doi: 10.1006/jmaa.2000.7343.![]() ![]() ![]() |
[7] |
J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal., 36 (1999), 747-766.
doi: 10.1016/S0362-546X(98)00126-6.![]() ![]() ![]() |
[8] |
J. Chattopadhyay and S. Pal, Viral infection of phytoplankton-zooplankton system-a mathematical modeling, Ecol. Modelling, 151 (2002), 15-28.
doi: 10.1016/S0304-3800(01)00415-X.![]() ![]() |
[9] |
C. Cosner, D. L. DeAngelis, J. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators, Theoret. Population Biol., 56 (1999), 65-75.
doi: 10.1006/tpbi.1999.1414.![]() ![]() |
[10] |
D. Gilbarg and N. S. Trudinger,
Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983.
![]() ![]() |
[11] |
A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of Nicholson's
blowflies as an example, Ecology, 73 (1992), 1552-1563.
doi: 10.2307/1940008.![]() ![]() |
[12] |
K. Hadeler and H. Freedman, Predator-prey population with parasite infection, J. Math. Biol., 27 (1989), 609-631.
doi: 10.1007/BF00276947.![]() ![]() ![]() |
[13] |
S. B. Hsu, T. W. Hwang and Y. Kuang, Rich dynamics of a ratio-dependent one-prey two-predators model, J. Math. Biol., 43 (2001), 377-396.
doi: 10.1007/s002850100100.![]() ![]() ![]() |
[14] |
S. B. Hsu, T. W. Hwang and Y. Kuang, A ratio-dependent food chain model and its applications to biological control, Math. Biosci., 181 (2003), 55-83.
doi: 10.1016/S0025-5564(02)00127-X.![]() ![]() ![]() |
[15] |
Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36 (1998), 389-406.
doi: 10.1007/s002850050.![]() ![]() ![]() |
[16] |
Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.
doi: 10.1006/jdeq.1996.0157.![]() ![]() ![]() |
[17] |
C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.
doi: 10.1016/0022-0396(88)90147-7.![]() ![]() ![]() |
[18] |
Z. Lin and M. Pedersen, Stability in a diffusive food-chain model with Michaelis-Menten functional
response, Nonlinear Anal., 57 (2004), 421-433.
doi: 10.1016/j.na.2004.02.022.![]() ![]() ![]() |
[19] |
L. Nirenberg,
Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Science, New York, 1974.
![]() ![]() |
[20] |
P. Y. H. Pang and M. X. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 33 (2003), 919-942.
doi: 10.1017/S0308210500002742.![]() ![]() ![]() |
[21] |
P. Y. H. Pang and M. X. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Differential Equations, 200 (2004), 245-273.
doi: 10.1016/j.jde.2004.01.004.![]() ![]() ![]() |
[22] |
C. V. Pao,
Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
![]() ![]() |
[23] |
C. V. Pao, Quasisolutions and global attractor of reaction-diffusion systems, Nonlinear Anal., 26 (1996), 1889-1903.
doi: 10.1016/0362-546X(95)00058-4.![]() ![]() ![]() |
[24] |
K. Ryu and I. Ahn, Positive solutions to ratio-dependent predator-prey interacting systems, J. Differential Equations, 218 (2005), 117-135.
doi: 10.1016/j.jde.2005.06.020.![]() ![]() ![]() |
[25] |
J. Smoller,
Shock Waves and Reaction-Diffusion Equations,
$2^{nd}$ edition, Springer-Verlag, New York, 1994.
![]() ![]() |
[26] |
Y. Xiao and L. Chen, A ratio-dependent predator-prey model with disease in the prey, Appl. Maths. Comp., 131 (2002), 397-414.
doi: 10.1016/S0096-3003(01)00156-4.![]() ![]() ![]() |
[27] |
Y. Xiao and L. Chen, Analysis of a three species eco-epidemiological model, J. Math. Anal.
Appl., 258 (2001), 733-754.
doi: 10.1006/jmaa.2001.7514.![]() ![]() ![]() |