• Previous Article
    Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model
  • CPAA Home
  • This Issue
  • Next Article
    The asymptotic limits of solutions to the Riemann problem for the scaled Leroux system
March  2018, 17(2): 413-428. doi: 10.3934/cpaa.2018023

The regularity of some vector-valued variational inequalities with gradient constraints

Department of Mathematics, UC Berkeley, Berkeley, CA 94720, USA

Received  April 2015 Revised  October 2015 Published  March 2018

We prove the optimal regularity for some class of vector-valued variational inequalities with gradient constraints. We also give a new proof for the optimal regularity of some scalar variational inequalities with gradient constraints. In addition, we prove that some class of variational inequalities with gradient constraints are equivalent to an obstacle problem, both in the scalar case and in the vector-valued case.

Citation: Mohammad Safdari. The regularity of some vector-valued variational inequalities with gradient constraints. Communications on Pure & Applied Analysis, 2018, 17 (2) : 413-428. doi: 10.3934/cpaa.2018023
References:
[1]

H. Brezis and M. Sibony, Équivalence de deux inéquations variationnelles et applications, Arch. Rational Mech. Anal., 41 (1971), 254-265.  doi: 10.1007/BF00250529.  Google Scholar

[2]

H. Brezis and G. Stampacchia, Sur la régularité de la solution d'inéquations elliptiques, Bull. Soc. Math. France, 96 (1968), 153-180.   Google Scholar

[3]

L. A. Caffarelli and N. M. Riviére, The Lipschitz character of the stress tensor, when twisting an elastic plastic bar, Arch. Rational Mech. Anal., 69 (1979), 31-36.  doi: 10.1007/BF00248408.  Google Scholar

[4]

L. C. Evans, A second-order elliptic equation with gradient constraint, Comm. Partial Differential Equations, 4 (1979), 555-572.  doi: 10.1080/03605307908820103.  Google Scholar

[5]

A. Friedman, Variational Principles And Free-Boundary Problems, Pure and Applied Mathematics, John Wiley & Sons, Inc. , New York, 1982, A Wiley-Interscience Publication.  Google Scholar

[6]

C. Gerhardt, Regularity of solutions of nonlinear variational inequalities with a gradient bound as constraint, Arch. Rational Mech. Anal., 58 (1975), 309-315.  doi: 10.1007/BF00250293.  Google Scholar

[7]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.  Google Scholar

[8]

H. Ishii and S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint, Comm. Partial Differential Equations, 8 (1983), 317-346.  doi: 10.1080/03605308308820271.  Google Scholar

[9]

R. Jensen, Regularity for elastoplastic type variational inequalities, Indiana Univ. Math. J., 32 (1983), 407-423.  doi: 10.1512/iumj.1983.32.32030.  Google Scholar

[10]

C. Mariconda and G. Treu, Gradient maximum principle for minima, J. Optim. Theory Appl., 112 (2002), 167-186.  doi: 10.1023/A:1013052830852.  Google Scholar

[11]

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N. J. , 1970.  Google Scholar

[12]

T. N. Rozhkovskaya, Unilateral problems for elliptic systems with gradient constraints, in Partial differential equations, Part 1, 2 (Warsaw, 1990), vol. 2 of Banach Center Publ., 27, Part 1, Polish Acad. Sci., Warsaw, (1992), 425-445.   Google Scholar

[13]

G. Treu and M. Vornicescu, On the equivalence of two variational problems, Calc. Var. Partial Differential Equations, 11 (2000), 307-319.  doi: 10.1007/s005260000040.  Google Scholar

[14]

M. Wiegner, The $C^{1, 1}$-character of solutions of second order elliptic equations with gradient constraint, Comm. Partial Differential Equations, 6 (1981), 361-371.  doi: 10.1080/03605308108820181.  Google Scholar

show all references

References:
[1]

H. Brezis and M. Sibony, Équivalence de deux inéquations variationnelles et applications, Arch. Rational Mech. Anal., 41 (1971), 254-265.  doi: 10.1007/BF00250529.  Google Scholar

[2]

H. Brezis and G. Stampacchia, Sur la régularité de la solution d'inéquations elliptiques, Bull. Soc. Math. France, 96 (1968), 153-180.   Google Scholar

[3]

L. A. Caffarelli and N. M. Riviére, The Lipschitz character of the stress tensor, when twisting an elastic plastic bar, Arch. Rational Mech. Anal., 69 (1979), 31-36.  doi: 10.1007/BF00248408.  Google Scholar

[4]

L. C. Evans, A second-order elliptic equation with gradient constraint, Comm. Partial Differential Equations, 4 (1979), 555-572.  doi: 10.1080/03605307908820103.  Google Scholar

[5]

A. Friedman, Variational Principles And Free-Boundary Problems, Pure and Applied Mathematics, John Wiley & Sons, Inc. , New York, 1982, A Wiley-Interscience Publication.  Google Scholar

[6]

C. Gerhardt, Regularity of solutions of nonlinear variational inequalities with a gradient bound as constraint, Arch. Rational Mech. Anal., 58 (1975), 309-315.  doi: 10.1007/BF00250293.  Google Scholar

[7]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.  Google Scholar

[8]

H. Ishii and S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint, Comm. Partial Differential Equations, 8 (1983), 317-346.  doi: 10.1080/03605308308820271.  Google Scholar

[9]

R. Jensen, Regularity for elastoplastic type variational inequalities, Indiana Univ. Math. J., 32 (1983), 407-423.  doi: 10.1512/iumj.1983.32.32030.  Google Scholar

[10]

C. Mariconda and G. Treu, Gradient maximum principle for minima, J. Optim. Theory Appl., 112 (2002), 167-186.  doi: 10.1023/A:1013052830852.  Google Scholar

[11]

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N. J. , 1970.  Google Scholar

[12]

T. N. Rozhkovskaya, Unilateral problems for elliptic systems with gradient constraints, in Partial differential equations, Part 1, 2 (Warsaw, 1990), vol. 2 of Banach Center Publ., 27, Part 1, Polish Acad. Sci., Warsaw, (1992), 425-445.   Google Scholar

[13]

G. Treu and M. Vornicescu, On the equivalence of two variational problems, Calc. Var. Partial Differential Equations, 11 (2000), 307-319.  doi: 10.1007/s005260000040.  Google Scholar

[14]

M. Wiegner, The $C^{1, 1}$-character of solutions of second order elliptic equations with gradient constraint, Comm. Partial Differential Equations, 6 (1981), 361-371.  doi: 10.1080/03605308108820181.  Google Scholar

[1]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[2]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[3]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[4]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[5]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[6]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[7]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[8]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[9]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[10]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[11]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[12]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[13]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[14]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[15]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[17]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[18]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[19]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (78)
  • HTML views (156)
  • Cited by (1)

Other articles
by authors

[Back to Top]