• Previous Article
    Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model
  • CPAA Home
  • This Issue
  • Next Article
    The asymptotic limits of solutions to the Riemann problem for the scaled Leroux system
March  2018, 17(2): 413-428. doi: 10.3934/cpaa.2018023

The regularity of some vector-valued variational inequalities with gradient constraints

Department of Mathematics, UC Berkeley, Berkeley, CA 94720, USA

Received  April 2015 Revised  October 2015 Published  March 2018

We prove the optimal regularity for some class of vector-valued variational inequalities with gradient constraints. We also give a new proof for the optimal regularity of some scalar variational inequalities with gradient constraints. In addition, we prove that some class of variational inequalities with gradient constraints are equivalent to an obstacle problem, both in the scalar case and in the vector-valued case.

Citation: Mohammad Safdari. The regularity of some vector-valued variational inequalities with gradient constraints. Communications on Pure & Applied Analysis, 2018, 17 (2) : 413-428. doi: 10.3934/cpaa.2018023
References:
[1]

H. Brezis and M. Sibony, Équivalence de deux inéquations variationnelles et applications, Arch. Rational Mech. Anal., 41 (1971), 254-265.  doi: 10.1007/BF00250529.  Google Scholar

[2]

H. Brezis and G. Stampacchia, Sur la régularité de la solution d'inéquations elliptiques, Bull. Soc. Math. France, 96 (1968), 153-180.   Google Scholar

[3]

L. A. Caffarelli and N. M. Riviére, The Lipschitz character of the stress tensor, when twisting an elastic plastic bar, Arch. Rational Mech. Anal., 69 (1979), 31-36.  doi: 10.1007/BF00248408.  Google Scholar

[4]

L. C. Evans, A second-order elliptic equation with gradient constraint, Comm. Partial Differential Equations, 4 (1979), 555-572.  doi: 10.1080/03605307908820103.  Google Scholar

[5]

A. Friedman, Variational Principles And Free-Boundary Problems, Pure and Applied Mathematics, John Wiley & Sons, Inc. , New York, 1982, A Wiley-Interscience Publication.  Google Scholar

[6]

C. Gerhardt, Regularity of solutions of nonlinear variational inequalities with a gradient bound as constraint, Arch. Rational Mech. Anal., 58 (1975), 309-315.  doi: 10.1007/BF00250293.  Google Scholar

[7]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.  Google Scholar

[8]

H. Ishii and S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint, Comm. Partial Differential Equations, 8 (1983), 317-346.  doi: 10.1080/03605308308820271.  Google Scholar

[9]

R. Jensen, Regularity for elastoplastic type variational inequalities, Indiana Univ. Math. J., 32 (1983), 407-423.  doi: 10.1512/iumj.1983.32.32030.  Google Scholar

[10]

C. Mariconda and G. Treu, Gradient maximum principle for minima, J. Optim. Theory Appl., 112 (2002), 167-186.  doi: 10.1023/A:1013052830852.  Google Scholar

[11]

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N. J. , 1970.  Google Scholar

[12]

T. N. Rozhkovskaya, Unilateral problems for elliptic systems with gradient constraints, in Partial differential equations, Part 1, 2 (Warsaw, 1990), vol. 2 of Banach Center Publ., 27, Part 1, Polish Acad. Sci., Warsaw, (1992), 425-445.   Google Scholar

[13]

G. Treu and M. Vornicescu, On the equivalence of two variational problems, Calc. Var. Partial Differential Equations, 11 (2000), 307-319.  doi: 10.1007/s005260000040.  Google Scholar

[14]

M. Wiegner, The $C^{1, 1}$-character of solutions of second order elliptic equations with gradient constraint, Comm. Partial Differential Equations, 6 (1981), 361-371.  doi: 10.1080/03605308108820181.  Google Scholar

show all references

References:
[1]

H. Brezis and M. Sibony, Équivalence de deux inéquations variationnelles et applications, Arch. Rational Mech. Anal., 41 (1971), 254-265.  doi: 10.1007/BF00250529.  Google Scholar

[2]

H. Brezis and G. Stampacchia, Sur la régularité de la solution d'inéquations elliptiques, Bull. Soc. Math. France, 96 (1968), 153-180.   Google Scholar

[3]

L. A. Caffarelli and N. M. Riviére, The Lipschitz character of the stress tensor, when twisting an elastic plastic bar, Arch. Rational Mech. Anal., 69 (1979), 31-36.  doi: 10.1007/BF00248408.  Google Scholar

[4]

L. C. Evans, A second-order elliptic equation with gradient constraint, Comm. Partial Differential Equations, 4 (1979), 555-572.  doi: 10.1080/03605307908820103.  Google Scholar

[5]

A. Friedman, Variational Principles And Free-Boundary Problems, Pure and Applied Mathematics, John Wiley & Sons, Inc. , New York, 1982, A Wiley-Interscience Publication.  Google Scholar

[6]

C. Gerhardt, Regularity of solutions of nonlinear variational inequalities with a gradient bound as constraint, Arch. Rational Mech. Anal., 58 (1975), 309-315.  doi: 10.1007/BF00250293.  Google Scholar

[7]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.  Google Scholar

[8]

H. Ishii and S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint, Comm. Partial Differential Equations, 8 (1983), 317-346.  doi: 10.1080/03605308308820271.  Google Scholar

[9]

R. Jensen, Regularity for elastoplastic type variational inequalities, Indiana Univ. Math. J., 32 (1983), 407-423.  doi: 10.1512/iumj.1983.32.32030.  Google Scholar

[10]

C. Mariconda and G. Treu, Gradient maximum principle for minima, J. Optim. Theory Appl., 112 (2002), 167-186.  doi: 10.1023/A:1013052830852.  Google Scholar

[11]

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N. J. , 1970.  Google Scholar

[12]

T. N. Rozhkovskaya, Unilateral problems for elliptic systems with gradient constraints, in Partial differential equations, Part 1, 2 (Warsaw, 1990), vol. 2 of Banach Center Publ., 27, Part 1, Polish Acad. Sci., Warsaw, (1992), 425-445.   Google Scholar

[13]

G. Treu and M. Vornicescu, On the equivalence of two variational problems, Calc. Var. Partial Differential Equations, 11 (2000), 307-319.  doi: 10.1007/s005260000040.  Google Scholar

[14]

M. Wiegner, The $C^{1, 1}$-character of solutions of second order elliptic equations with gradient constraint, Comm. Partial Differential Equations, 6 (1981), 361-371.  doi: 10.1080/03605308108820181.  Google Scholar

[1]

G. Mastroeni, L. Pellegrini. On the image space analysis for vector variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (1) : 123-132. doi: 10.3934/jimo.2005.1.123

[2]

Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial & Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57

[3]

J. Gwinner. On differential variational inequalities and projected dynamical systems - equivalence and a stability result. Conference Publications, 2007, 2007 (Special) : 467-476. doi: 10.3934/proc.2007.2007.467

[4]

Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487

[5]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[6]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

[7]

Gayatri Pany, Ram N. Mohapatra. A study on vector variational-like inequalities using convexificators and application to its bi-level form. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021161

[8]

Shige Peng, Mingyu Xu. Constrained BSDEs, viscosity solutions of variational inequalities and their applications. Mathematical Control & Related Fields, 2013, 3 (2) : 233-244. doi: 10.3934/mcrf.2013.3.233

[9]

Qingzhi Yang. The revisit of a projection algorithm with variable steps for variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 211-217. doi: 10.3934/jimo.2005.1.211

[10]

Michel Chipot, Karen Yeressian. On the asymptotic behavior of variational inequalities set in cylinders. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 4875-4890. doi: 10.3934/dcds.2013.33.4875

[11]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[12]

P. Smoczynski, Mohamed Aly Tawhid. Two numerical schemes for general variational inequalities. Journal of Industrial & Management Optimization, 2008, 4 (2) : 393-406. doi: 10.3934/jimo.2008.4.393

[13]

Yusuke Murase, Risei Kano, Nobuyuki Kenmochi. Elliptic Quasi-variational inequalities and applications. Conference Publications, 2009, 2009 (Special) : 583-591. doi: 10.3934/proc.2009.2009.583

[14]

G. Idone, A. Maugeri. Variational inequalities and a transport planning for an elastic and continuum model. Journal of Industrial & Management Optimization, 2005, 1 (1) : 81-86. doi: 10.3934/jimo.2005.1.81

[15]

Barbara Panicucci, Massimo Pappalardo, Mauro Passacantando. On finite-dimensional generalized variational inequalities. Journal of Industrial & Management Optimization, 2006, 2 (1) : 43-53. doi: 10.3934/jimo.2006.2.43

[16]

Dimitri Mugnai. Almost uniqueness result for reversed variational inequalities. Conference Publications, 2007, 2007 (Special) : 751-757. doi: 10.3934/proc.2007.2007.751

[17]

Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237-246. doi: 10.3934/proc.2013.2013.237

[18]

Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, 2021, 20 (5) : 1851-1866. doi: 10.3934/cpaa.2021045

[19]

Nguyen Thi Van Anh. On periodic solutions to a class of delay differential variational inequalities. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021045

[20]

Yurii Nesterov, Laura Scrimali. Solving strongly monotone variational and quasi-variational inequalities. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1383-1396. doi: 10.3934/dcds.2011.31.1383

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (115)
  • HTML views (159)
  • Cited by (3)

Other articles
by authors

[Back to Top]