Advanced Search
Article Contents
Article Contents

Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model

  • * Corresponding author

    * Corresponding author 
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we construct a fully discrete numerical scheme for approximating a two-dimensional multiphasic incompressible fluid model, also called the Kazhikhov-Smagulov model. We use a first-order time discretization and a splitting in time to allow us the construction of an hybrid scheme which combines a Finite Volume and a Finite Element method. Consequently, at each time step, one only needs to solve two decoupled problems, the first one for the density and the second one for the velocity and pressure. We will prove the stability of the scheme and the convergence towards the global in time weak solution of the model.

    Mathematics Subject Classification: Primary:35Q35, 65M12, 65M60, 65M08;Secondary:35B50.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and Its Applications, 22, North-Holland, Publishing Co. , Amesterdam, 1990.
    [2] D. BreschE. H. Essoufi and M. Sy, Effects of density dependent viscosities on multiphasic incompressible fluid models, J. Math. Fluid Mech., 9 (2007), 377-397. 
    [3] R. C. CabralesF. Guillén-González and J. V. Gutiérrez-Santacreu, Stability and convergence for a complete model of mass diffusion, Applied Numerical Mathematics, 61 (2011), 1161-1185. 
    [4] X. CaiL. Liao and Y. Sun, Global regularity for the initial value problem of a 2-D Kazhikhov-Smagulov type model, Nonlinear Analysis, 75 (2012), 5975-5983. 
    [5] X. CaiL. Liao and Y. Sun, Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model, Discrete and Continuous Dynamical Systems, Series S, 7 (2014), 917-923. 
    [6] C. CalgaroE. Chane-KaneE. Creusé and T. Goudon, $L^∞$-stability of vertex-based MUSCL finite volume schemes on unstructured grids: Simulation of incompressible flows with high density ratios, J. Comput. Physics, 229 (2010), 6027-6046. 
    [7] C. CalgaroE. Creusé and T. Goudon, An hybrid finite volume-finite element method for variable density incompressible flows, J. Comput. Physics, 227 (2008), 4671-4696. 
    [8] C. CalgaroE. Creusé and T. Goudon, Modeling and simulation of mixture flows: Application to powder-snow avalanches, Computers and Fluids, 107 (2015), 100-122. 
    [9] C. Calgaro and M. Ezzoug, $L^∞$-stability of IMEX-BDF2 finite volume scheme for convection-diffusion equation, Finite Volumes for Complex Applications Ⅷ -Methods and Theoretical Aspects, 2 (2017), 245-253. 
    [10] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1979.
    [11] J. Droniou, Finite volume schemes for diffusion equations: Introduction to and review of modern methods, Mathematical Models and Methods in Applied Sciences, 24 (2014), 1575-1619. 
    [12] J. Étienne and P. Saramito, A priori error estimates of the Lagrange-Galerkin method for Kazhikhov-Smagulov type systems, C.R. Acad. Sci. Paris Ser. I, 341 (2005), 769-774. 
    [13] R. EymardT. Gallouët and R. Herbin, Finite Volume Methods, Handbook of Numerical Analysis, vol. Ⅶ, North-Holland, Amsterdam, (2000), 713-1020. 
    [14] M. FeistauerJ. Felcman and M. Lukáčová-Medvid'ová, On the convergence of a combined finite volume-finite element method for nonlinear convection-diffusion problems, Numerical Methods Partial Differential Equations, 13 (1997), 163-190. 
    [15] M. FeistauerJ. FelcmanM. Lukáčová-Medvid'ová and G. Warnecke, Error estimates for a combined finite volume-finite element method for nonlinear convection-diffusion problems, SIAM J. Numer. Anal., 36 (1999), 1528-1548. 
    [16] V. Girault and P. -A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithm, Springer Series in Computational Mathematics, Vol 5, Springer-Verlag, Berlin, 1986.
    [17] F. Guillén-GonzálezP. Damázio and M. A. Rojas-Medar, Approximation by an iterative method for regular solutions for incompressible fluids with mass diffusion, J. Math. Anal. Appl., 326 (2007), 468-487. 
    [18] F. Guillén-González and J. V. Gutiérrez-Santacreu, Unconditional stability and convergence of fully discrete schemes for 2D viscous fluids models with mass diffusion, Mathematics of Computation., 77 (2008), 1495-1524. 
    [19] F. Guillén-González and J. V. Gutiérrez-Santacreu, Conditional stability and convergence of fully discrete scheme for three-dimensional Navier-Stokes equations with mass diffusion, SIAM J. Numer. Anal., 46 (2008), 2276-2308. 
    [20] F. Guillén-González and J. V. Gutiérrez-Santacreu, Error estimates of a linear decoupled Euler-FEM scheme for a mass diffusion model, Numer. Math., 117 (2011), 333-371. 
    [21] A. Kazhikhov and Sh. Smagulov, The correctness of boundary value problems in a diffusion model of an inhomogeneous fluid, Sov. Phys. Dokl., 22 (1977), 249-252. 
    [22] J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969.
    [23] P. Secchi, On the motion of viscous fluids in the presence of diffusion, SIAM J. Math. Anal., 19 (1988), 22-31. 
    [24] D. Serre, Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves, Cambridge University Press, 2003.
    [25] J. Simon, Compact sets in the space $L^p\big(0, T;B\big)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. 
    [26] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Revised Edition, Studies in mathematics and its applications vol. 2, North Holland Publishing Company-Amsterdam, New York, 1984.
    [27] E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamic; A Practical Introduction, Springer-Verlag, Berlin, 2009.
  • 加载中

Article Metrics

HTML views(509) PDF downloads(154) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint