\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation

The first author is partially supported by by the Grant-in-Aid for Encouragement of Young Scientists (B)(No. 15K17573) from Japan Society for the Promotion of Science.
Abstract Full Text(HTML) Related Papers Cited by
  • This paper concerns the blow-up problem for a semilinear heat equation

    $\begin{equation}\label{eq:P}\tag{P}≤\left\{\begin{array}{ll}\partial_t u=Δ u+u^p, &x∈ Ω, \, \, \, t>0, \\ u(x, t)=0, &x∈\partialΩ, \, \, \, t>0, \\ u(x, 0)=u_0(x)≥ 0, &x∈ Ω, \end{array}\right.\end{equation}$

    where $\partial_t=\partial/\partial t$, $p>1$, $N≥ 1$, $Ω\subset {\bf R}^N$, $u_0$ is a bounded continuous function in $\overline{Ω}$. For the case $u_0(x)=λ\varphi(x)$ for some function $\varphi$ and a sufficiently large $λ>0$, it is known that the solution blows up only near the maximum points of $\varphi$ under suitable assumptions. Furthermore, if $\varphi$ has several maximum points, then the blow-up set for (P) is characterized by $Δ\varphi$ at its maximum points. However, for initial data $u_0(x)=λ\varphi(x)$, it seems difficult to obtain further information on the blow-up set such that effect of higher order derivatives of initial data. In this paper, we consider another type large initial data $u_0(x)=λ+\varphi(x)$ and study the relationship between the blow-up set for (P) and higher order derivatives of initial data.

    Mathematics Subject Classification: Primary:35K91;Secondary:35B44.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] X. Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Differential Equations, 78 (1989), 160-190.  doi: 10.1016/0022-0396(89)90081-8.
    [2] A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447.  doi: 10.1512/iumj.1985.34.34025.
    [3] Y. Fujishima, Location of the blow-up set for a superlinear heat equation with small diffusion, Differential Integral Equations, 25 (2012), 759-786. 
    [4] Y. Fujishima, Blow-up set for a superlinear heat equation and pointedness of the initial data, Discrete Continuous Dynamical Systems A, 34 (2014), 4617-4645.  doi: 10.3934/dcds.2014.34.4617.
    [5] Y. Fujishima and K. Ishige, Blow-up set for a semilinear heat equation with small diffusion, J. Differential Equations, 249 (2010), 1056-1077.  doi: 10.1016/j.jde.2010.03.028.
    [6] Y. Fujishima and K. Ishige, Blow-up set for a semilinear heat equation and pointedness of the initial data, Indiana Univ. Math. J., 61 (2012), 627-663.  doi: 10.1512/iumj.2012.61.4596.
    [7] Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42 (1989), 845-884.  doi: 10.1002/cpa.3160420607.
    [8] K. Ishige and H. Yagisita, Blow-up problems for a semilinear heat equation with large diffusion, J. Differential Equations, 212 (2005), 114-128.  doi: 10.1016/j.jde.2004.10.021.
    [9] N. Mizoguchi and E. Yanagida, Life span of solutions for a semilinear parabolic problem with small diffusion, J. Math. Anal. Appl., 261 (2001), 350-368.  doi: 10.1006/jmaa.2001.7530.
    [10] N. Mizoguchi and E. Yanagida, Life span of solutions with large initial data in a semilinear parabolic equation, Indiana Univ. Math. J., 50 (2001), 591-610.  doi: 10.1512/iumj.2001.50.1905.
    [11] P. Quittner and P. Souplet, Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher Birkhäuser Verlag, Basel, 2007.
    [12] J. J. L. Velázquez, Higher-dimensional blow-up for semilinear parabolic equations, Comm. Partial Differential Equations, 17 (1992), 1567-1596.  doi: 10.1080/03605309208820896.
    [13] J. J. L. Velázquez, Estimates on the $(n-1)$-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation, Indiana Univ. Math. J., 42 (1993), 445-476.  doi: 10.1512/iumj.1993.42.42021.
    [14] F. B. Weissler, Single point blow-up for a semilinear initial value problem, J. Differential Equations, 55 (1984), 204-224.  doi: 10.1016/0022-0396(84)90081-0.
    [15] H. Yagisita, Blow-up profile of a solution for a nonlinear heat equation with small diffusion, J. Math. Soc. Japan, 56 (2004), 993-1005.  doi: 10.2969/jmsj/1190905445.
    [16] H. Yagisita, Variable instability of a constant blow-up solution in a nonlinear heat equation, J. Math. Soc. Japan, 56 (2004), 1007-1017.  doi: 10.2969/jmsj/1190905446.
    [17] H. Zaag, On the regularity of the blow-up set for semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 505-542.  doi: 10.1016/S0294-1449(01)00088-9.
    [18] H. Zaag, One-dimensional behavior of singular $N$-dimensional solutions of semilinear heat equations, Comm. Math. Phys., 225 (2002), 523-549.  doi: 10.1007/s002200100589.
    [19] H. Zaag, Regularity of the blow-up set and singular behavior for semilinear heat equations, Mathematics & mathematics education (Bethlehem, 2000), 337-347, World Sci. Publ., River Edge, NJ, 2002.
    [20] H. Zaag, Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation, Duke Math. J., 133 (2006), 499-525.  doi: 10.1215/S0012-7094-06-13333-1.
  • 加载中
SHARE

Article Metrics

HTML views(481) PDF downloads(155) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return