• Previous Article
    Nonexistence of nonconstant positive steady states of a diffusive predator-prey model
  • CPAA Home
  • This Issue
  • Next Article
    Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model
March  2018, 17(2): 449-475. doi: 10.3934/cpaa.2018025

On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation

Department of Mathematical and Systems Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561, Japan

Received  November 2016 Revised  May 2017 Published  March 2018

Fund Project: The first author is partially supported by by the Grant-in-Aid for Encouragement of Young Scientists (B)(No. 15K17573) from Japan Society for the Promotion of Science.

This paper concerns the blow-up problem for a semilinear heat equation
$\begin{equation}\label{eq:P}\tag{P}≤\left\{\begin{array}{ll}\partial_t u=Δ u+u^p, &x∈ Ω, \, \, \, t>0, \\ u(x, t)=0, &x∈\partialΩ, \, \, \, t>0, \\ u(x, 0)=u_0(x)≥ 0, &x∈ Ω, \end{array}\right.\end{equation}$
where
$\partial_t=\partial/\partial t$
,
$p>1$
,
$N≥ 1$
,
$Ω\subset {\bf R}^N$
,
$u_0$
is a bounded continuous function in
$\overline{Ω}$
. For the case
$u_0(x)=λ\varphi(x)$
for some function
$\varphi$
and a sufficiently large
$λ>0$
, it is known that the solution blows up only near the maximum points of
$\varphi$
under suitable assumptions. Furthermore, if
$\varphi$
has several maximum points, then the blow-up set for (P) is characterized by
$Δ\varphi$
at its maximum points. However, for initial data
$u_0(x)=λ\varphi(x)$
, it seems difficult to obtain further information on the blow-up set such that effect of higher order derivatives of initial data. In this paper, we consider another type large initial data
$u_0(x)=λ+\varphi(x)$
and study the relationship between the blow-up set for (P) and higher order derivatives of initial data.
Citation: Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025
References:
[1]

X. Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Differential Equations, 78 (1989), 160-190.  doi: 10.1016/0022-0396(89)90081-8.  Google Scholar

[2]

A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447.  doi: 10.1512/iumj.1985.34.34025.  Google Scholar

[3]

Y. Fujishima, Location of the blow-up set for a superlinear heat equation with small diffusion, Differential Integral Equations, 25 (2012), 759-786.   Google Scholar

[4]

Y. Fujishima, Blow-up set for a superlinear heat equation and pointedness of the initial data, Discrete Continuous Dynamical Systems A, 34 (2014), 4617-4645.  doi: 10.3934/dcds.2014.34.4617.  Google Scholar

[5]

Y. Fujishima and K. Ishige, Blow-up set for a semilinear heat equation with small diffusion, J. Differential Equations, 249 (2010), 1056-1077.  doi: 10.1016/j.jde.2010.03.028.  Google Scholar

[6]

Y. Fujishima and K. Ishige, Blow-up set for a semilinear heat equation and pointedness of the initial data, Indiana Univ. Math. J., 61 (2012), 627-663.  doi: 10.1512/iumj.2012.61.4596.  Google Scholar

[7]

Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42 (1989), 845-884.  doi: 10.1002/cpa.3160420607.  Google Scholar

[8]

K. Ishige and H. Yagisita, Blow-up problems for a semilinear heat equation with large diffusion, J. Differential Equations, 212 (2005), 114-128.  doi: 10.1016/j.jde.2004.10.021.  Google Scholar

[9]

N. Mizoguchi and E. Yanagida, Life span of solutions for a semilinear parabolic problem with small diffusion, J. Math. Anal. Appl., 261 (2001), 350-368.  doi: 10.1006/jmaa.2001.7530.  Google Scholar

[10]

N. Mizoguchi and E. Yanagida, Life span of solutions with large initial data in a semilinear parabolic equation, Indiana Univ. Math. J., 50 (2001), 591-610.  doi: 10.1512/iumj.2001.50.1905.  Google Scholar

[11]

P. Quittner and P. Souplet, Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher Birkhäuser Verlag, Basel, 2007.  Google Scholar

[12]

J. J. L. Velázquez, Higher-dimensional blow-up for semilinear parabolic equations, Comm. Partial Differential Equations, 17 (1992), 1567-1596.  doi: 10.1080/03605309208820896.  Google Scholar

[13]

J. J. L. Velázquez, Estimates on the $(n-1)$-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation, Indiana Univ. Math. J., 42 (1993), 445-476.  doi: 10.1512/iumj.1993.42.42021.  Google Scholar

[14]

F. B. Weissler, Single point blow-up for a semilinear initial value problem, J. Differential Equations, 55 (1984), 204-224.  doi: 10.1016/0022-0396(84)90081-0.  Google Scholar

[15]

H. Yagisita, Blow-up profile of a solution for a nonlinear heat equation with small diffusion, J. Math. Soc. Japan, 56 (2004), 993-1005.  doi: 10.2969/jmsj/1190905445.  Google Scholar

[16]

H. Yagisita, Variable instability of a constant blow-up solution in a nonlinear heat equation, J. Math. Soc. Japan, 56 (2004), 1007-1017.  doi: 10.2969/jmsj/1190905446.  Google Scholar

[17]

H. Zaag, On the regularity of the blow-up set for semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 505-542.  doi: 10.1016/S0294-1449(01)00088-9.  Google Scholar

[18]

H. Zaag, One-dimensional behavior of singular $N$-dimensional solutions of semilinear heat equations, Comm. Math. Phys., 225 (2002), 523-549.  doi: 10.1007/s002200100589.  Google Scholar

[19]

H. Zaag, Regularity of the blow-up set and singular behavior for semilinear heat equations, Mathematics & mathematics education (Bethlehem, 2000), 337-347, World Sci. Publ., River Edge, NJ, 2002.  Google Scholar

[20]

H. Zaag, Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation, Duke Math. J., 133 (2006), 499-525.  doi: 10.1215/S0012-7094-06-13333-1.  Google Scholar

show all references

References:
[1]

X. Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Differential Equations, 78 (1989), 160-190.  doi: 10.1016/0022-0396(89)90081-8.  Google Scholar

[2]

A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447.  doi: 10.1512/iumj.1985.34.34025.  Google Scholar

[3]

Y. Fujishima, Location of the blow-up set for a superlinear heat equation with small diffusion, Differential Integral Equations, 25 (2012), 759-786.   Google Scholar

[4]

Y. Fujishima, Blow-up set for a superlinear heat equation and pointedness of the initial data, Discrete Continuous Dynamical Systems A, 34 (2014), 4617-4645.  doi: 10.3934/dcds.2014.34.4617.  Google Scholar

[5]

Y. Fujishima and K. Ishige, Blow-up set for a semilinear heat equation with small diffusion, J. Differential Equations, 249 (2010), 1056-1077.  doi: 10.1016/j.jde.2010.03.028.  Google Scholar

[6]

Y. Fujishima and K. Ishige, Blow-up set for a semilinear heat equation and pointedness of the initial data, Indiana Univ. Math. J., 61 (2012), 627-663.  doi: 10.1512/iumj.2012.61.4596.  Google Scholar

[7]

Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42 (1989), 845-884.  doi: 10.1002/cpa.3160420607.  Google Scholar

[8]

K. Ishige and H. Yagisita, Blow-up problems for a semilinear heat equation with large diffusion, J. Differential Equations, 212 (2005), 114-128.  doi: 10.1016/j.jde.2004.10.021.  Google Scholar

[9]

N. Mizoguchi and E. Yanagida, Life span of solutions for a semilinear parabolic problem with small diffusion, J. Math. Anal. Appl., 261 (2001), 350-368.  doi: 10.1006/jmaa.2001.7530.  Google Scholar

[10]

N. Mizoguchi and E. Yanagida, Life span of solutions with large initial data in a semilinear parabolic equation, Indiana Univ. Math. J., 50 (2001), 591-610.  doi: 10.1512/iumj.2001.50.1905.  Google Scholar

[11]

P. Quittner and P. Souplet, Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher Birkhäuser Verlag, Basel, 2007.  Google Scholar

[12]

J. J. L. Velázquez, Higher-dimensional blow-up for semilinear parabolic equations, Comm. Partial Differential Equations, 17 (1992), 1567-1596.  doi: 10.1080/03605309208820896.  Google Scholar

[13]

J. J. L. Velázquez, Estimates on the $(n-1)$-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation, Indiana Univ. Math. J., 42 (1993), 445-476.  doi: 10.1512/iumj.1993.42.42021.  Google Scholar

[14]

F. B. Weissler, Single point blow-up for a semilinear initial value problem, J. Differential Equations, 55 (1984), 204-224.  doi: 10.1016/0022-0396(84)90081-0.  Google Scholar

[15]

H. Yagisita, Blow-up profile of a solution for a nonlinear heat equation with small diffusion, J. Math. Soc. Japan, 56 (2004), 993-1005.  doi: 10.2969/jmsj/1190905445.  Google Scholar

[16]

H. Yagisita, Variable instability of a constant blow-up solution in a nonlinear heat equation, J. Math. Soc. Japan, 56 (2004), 1007-1017.  doi: 10.2969/jmsj/1190905446.  Google Scholar

[17]

H. Zaag, On the regularity of the blow-up set for semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 505-542.  doi: 10.1016/S0294-1449(01)00088-9.  Google Scholar

[18]

H. Zaag, One-dimensional behavior of singular $N$-dimensional solutions of semilinear heat equations, Comm. Math. Phys., 225 (2002), 523-549.  doi: 10.1007/s002200100589.  Google Scholar

[19]

H. Zaag, Regularity of the blow-up set and singular behavior for semilinear heat equations, Mathematics & mathematics education (Bethlehem, 2000), 337-347, World Sci. Publ., River Edge, NJ, 2002.  Google Scholar

[20]

H. Zaag, Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation, Duke Math. J., 133 (2006), 499-525.  doi: 10.1215/S0012-7094-06-13333-1.  Google Scholar

[1]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[2]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[3]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[4]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[5]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[8]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[9]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[10]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[11]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[12]

Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227

[13]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[14]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[15]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[16]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[17]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[18]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (56)
  • HTML views (194)
  • Cited by (1)

Other articles
by authors

[Back to Top]