In this paper, we investigate the Cauchy problem for the fourth order nonlinear Schrödinger equation
$i \partial_{t}u+\partial_{x}^{4}u=u^{2},\ \ (t,x)∈[0,T]× \mathbb{R}.$
Zheng (Adv. Differential Equations, 16(2011), 467-486.) has proved that the problem is locally well-posed in $H^{s}(\mathbb{R})$ with $-\frac{7}{4} <s≤q 0.$ In this paper, we aim at extending Zheng's work to a lower regularity index. We prove that the equation is locally well-posed in $H^{s}(\mathbb{R})$ when $s≥q -2$ and ill-posed when $s < -2$ in the sense that the solution map is discontinuous for $s <-2$. The key ingredient used in this paper is Besov-type space introduced by Bejenaru and Tao (Journal of Functional Analysis, 233(2006), 228-259.).
Citation: |
[1] |
I. Bejenaru and T. Tao, Sharp well-posedness and ill-posedness results for a quadratic nonlinear Schrödinger equation, J. Funct. Anal., 233 (2006), 228-259.
![]() ![]() |
[2] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156.
![]() ![]() |
[3] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbb{R}$ and $\mathbb{T}$, J. Amer. Math. Soc., 16 (2003), 705-749.
![]() ![]() |
[4] |
B. L. Guo and B. X. Wang, The global Cauchy problem and scattering of solutions for nonlinear Schrödinger equations in $H^{s}$, Diff. Int. Eqns., 15 (2002), 1073-1083.
![]() ![]() |
[5] |
C. Hao, L. Hsiao and B. X. Wang, Well-posedness for the fourth-order Schrödinger equations, J. Math. Anal. Appl., 320 (2006), 246-265.
![]() ![]() |
[6] |
C. Hao, L. Hsiao and B. X. Wang, Well-posedness of the Cauchy problem for the fourth-order Schrödinger equations in high dimensions, J. Math. Anal. Appl., 328 (2007), 58-83.
![]() ![]() |
[7] |
V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), 1336-1339.
![]() |
[8] |
N. Kishimoto, Remark on the paper "Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation" by I. Bejenaru and T. Tao, Atl. Electron. J. Math., 4 (2011), 35-48.
![]() ![]() |
[9] |
B. A. Ivanov and A. M. Kosevich, Stable three-dimensional small-amplitude soliton in magnetic materials, Sov. J. Low Temp. Phys., 9 (1983), 439-442.
![]() |
[10] |
C. X. Miao, G. X. Xu and L. F. Zhao, Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case, J. Diff. Eqns., 246 (2009), 3715-3749.
![]() ![]() |
[11] |
C. X. Miao and J. Q. Zheng, Scattering theory for the defocusing fourth-order Schrödinger equation, Nonlinearity, 29 (2016), 692-736.
![]() ![]() |
[12] |
B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Diff. Eqns., 4 (2007), 197-225.
![]() ![]() |
[13] |
B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517.
![]() ![]() |
[14] |
B. Pausader, The focusing energy-critical fourth-order Schrödinger equation with radial data, Discrete Contin. Dyn. Syst., 24 (2009), 1275-1292.
![]() ![]() |
[15] |
B. Pausader and S. L. Shao, The mass-critical fourth-order Schrödinger equation in high dimensions, J. Hyperbolic Diff. Eqns., 7 (2010), 651-705.
![]() ![]() |
[16] |
B. Pausader and S. X. Xia, Scattering theory for the fourth-order Schrödinger equation in low dimensions, Nonlinearity, 26 (2013), 2175-2191.
![]() ![]() |
[17] |
H. Pecher and W. von Wahl, Time dependent nonlinear Schrödinger equations, Manuscripta Math., 27 (1979), 125-157.
![]() ![]() |
[18] |
J. Segata, Modified wave operators for the fourth-order nonlinear Schrödinger-type equation with cubic non-linearity, Math. Methods. Appl. Sci., 26 (2006), 1785-1800.
![]() ![]() |
[19] |
T. Tao, Multilinear weighted convolution of $L^{2}$ functions, and applications to nonlinear dispersive equations, Amer. J. Math., 123 (2001), 839-908.
![]() ![]() |
[20] |
S. K. Turitsyn, Three-dimensional dispersion of nonlinearity and stability of multidimentional solitons, Teoret. Mat. Fiz. , 64 (1985), 226-232 (Russian).
![]() ![]() |
[21] |
J. Q. Zheng, Well-posedness for the fourth-order Schrödinger equations with quadratic nonlinearity, Adv. Diff. Eqns., 16 (2011), 467-486.
![]() ![]() |