• Previous Article
    On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption
  • CPAA Home
  • This Issue
  • Next Article
    Subsonic irrotational inviscid flow around certain bodies with two protruding corners
March  2018, 17(2): 557-578. doi: 10.3934/cpaa.2018030

On the existence and computation of periodic travelling waves for a 2D water wave model

Departamento de Matemáticas, Universidad del Valle, Calle 13 No 100-00, Cali, Colombia

* Corresponding author

Received  February 2017 Revised  July 2017 Published  March 2018

In this work we establish the existence of at least one weak periodic solution in the spatial directions of a nonlinear system of two coupled differential equations associated with a 2D Boussinesq model which describes the evolution of long water waves with small amplitude under the effect of surface tension. For wave speed $0 < |c| < 1$, the problem is reduced to finding a minimum for the corresponding action integral over a closed convex subset of the space $H^{1}_k(\mathbb{R})$ ($k$-periodic functions $f∈ L_k^2(\mathbb{R})$ such that $f' ∈ L_k^2(\mathbb{R})$). For wave speed $|c|>1$, the result is a direct consequence of the Lyapunov Center Theorem since the nonlinear system can be rewritten as a $4× 4$ system with a special Hamiltonian structure. In the case $|c|>1$, we also compute numerical approximations of these travelling waves by using a Fourier spectral discretization of the corresponding 1D travelling wave equations and a Newton-type iteration.

Citation: José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030
References:
[1]

U. M. AsherS. J. Ruuth and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), 797-823.   Google Scholar

[2]

C. Canuto, M. Y. Hussaini and A. Quarteroni, Spectral Methods in Fluid Dynamics Series in Computational Physics, 1988, Springer, Berlin.  Google Scholar

[3]

G. E. KarniadakisM. Israeli and S. A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97 (1991), 414-443.   Google Scholar

[4]

T. Kato, Quasilinear equations of evolution with applications to partial differential equations, Proceedings of the symposium at Dundee, Lecture Notes in Mathematics, 448, Springer, (1975), 25-70.  Google Scholar

[5]

T. Kato, On the Korteweg-de Vries equation, Manuscripta Mathematica, 28 (1979), 89-99.   Google Scholar

[6]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in Applied Mathematics, Advances in Mathematics, Supplementary Studies, 8, Academic Press, (1983), 92-128.  Google Scholar

[7]

J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985), 308-323.   Google Scholar

[8]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body problem 2nd ed. Applied Mathematical Sciences, vol. 90,2009, Springer-Verlag.  Google Scholar

[9]

P. A. Milewski and J. B. Keller, Three dimensional water waves, Studies Appl. Math., 37 (1996), 149-166.   Google Scholar

[10]

L. Paumond, A rigorous link between KP and a Benney-Luke Equation, Diff. Int. Eq., 16 (2003), 1039-1064.   Google Scholar

[11]

J. Quintero, Solitary water waves for a 2D Boussinesq type system, J. Part. Diff. Eqs., 23 (2010), 251-280.   Google Scholar

[12]

J. Quintero, The Cauchy problem and stability of solitary waves for a 2D Boussinesq-KdV type system, Diff. Int. Eqs., 21 (2011), 325-360.   Google Scholar

[13]

J. Quintero, From periodic travelling waves to solitons of a 2D water wave system, Meth. Appl. Anal., 21 (2014), 241-264.   Google Scholar

[14]

J. Quintero, A water wave mixed type problem: existence of periodic travelling waves for a 2D Boussinesq system, Rev. Academia Colombiana de Ciencias Naturales, Físicas y Exactas., 38 (2015), 6-17.   Google Scholar

[15]

J. R. Quintero and R. L. Pego, Two-dimensional solitary waves for a Benney-Luke equation, Physica D., 45 (1999), 476-496.   Google Scholar

[16]

J. G. VerwerJ. G. Blom and W. Hundsdorfer, An implicit-explicit approach for atmospheric transport-chemistry problems, Applied Numerical Mathematics, 20 (1996), 191-209.   Google Scholar

[17]

G. B. Whitham, Linear and Nonlinear Waves Wiley-Interscience, 1974.  Google Scholar

show all references

References:
[1]

U. M. AsherS. J. Ruuth and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), 797-823.   Google Scholar

[2]

C. Canuto, M. Y. Hussaini and A. Quarteroni, Spectral Methods in Fluid Dynamics Series in Computational Physics, 1988, Springer, Berlin.  Google Scholar

[3]

G. E. KarniadakisM. Israeli and S. A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97 (1991), 414-443.   Google Scholar

[4]

T. Kato, Quasilinear equations of evolution with applications to partial differential equations, Proceedings of the symposium at Dundee, Lecture Notes in Mathematics, 448, Springer, (1975), 25-70.  Google Scholar

[5]

T. Kato, On the Korteweg-de Vries equation, Manuscripta Mathematica, 28 (1979), 89-99.   Google Scholar

[6]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in Applied Mathematics, Advances in Mathematics, Supplementary Studies, 8, Academic Press, (1983), 92-128.  Google Scholar

[7]

J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985), 308-323.   Google Scholar

[8]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body problem 2nd ed. Applied Mathematical Sciences, vol. 90,2009, Springer-Verlag.  Google Scholar

[9]

P. A. Milewski and J. B. Keller, Three dimensional water waves, Studies Appl. Math., 37 (1996), 149-166.   Google Scholar

[10]

L. Paumond, A rigorous link between KP and a Benney-Luke Equation, Diff. Int. Eq., 16 (2003), 1039-1064.   Google Scholar

[11]

J. Quintero, Solitary water waves for a 2D Boussinesq type system, J. Part. Diff. Eqs., 23 (2010), 251-280.   Google Scholar

[12]

J. Quintero, The Cauchy problem and stability of solitary waves for a 2D Boussinesq-KdV type system, Diff. Int. Eqs., 21 (2011), 325-360.   Google Scholar

[13]

J. Quintero, From periodic travelling waves to solitons of a 2D water wave system, Meth. Appl. Anal., 21 (2014), 241-264.   Google Scholar

[14]

J. Quintero, A water wave mixed type problem: existence of periodic travelling waves for a 2D Boussinesq system, Rev. Academia Colombiana de Ciencias Naturales, Físicas y Exactas., 38 (2015), 6-17.   Google Scholar

[15]

J. R. Quintero and R. L. Pego, Two-dimensional solitary waves for a Benney-Luke equation, Physica D., 45 (1999), 476-496.   Google Scholar

[16]

J. G. VerwerJ. G. Blom and W. Hundsdorfer, An implicit-explicit approach for atmospheric transport-chemistry problems, Applied Numerical Mathematics, 20 (1996), 191-209.   Google Scholar

[17]

G. B. Whitham, Linear and Nonlinear Waves Wiley-Interscience, 1974.  Google Scholar

Figure 1.  Periodic travelling wave solution $(\eta,\varphi)$ of system (36)-(37) with $p = 1$, $\sigma = 0.52$, $\epsilon = \mu = 0.01$, $\beta = 50$, $\nu = 0.093$, $\gamma = 4.44$, $\rho = 0.02$, $\beta_1 = 0.01$, $\beta_2 = 1$, $\beta_3 = 2.59$, $c_0 = 1.2$, wave speed $c = 48.81$ and period $T = 91.7$, obtained after 6 Newton's iterations. In solid line is the numerical simulation at $t = 10$ obtained with the scheme (63)-(64) and in points is the travelling wave computed with the Newton's procedure translated a distance of $10 c$
Figure 2.  Periodic travelling wave solution $(\eta,\varphi)$ of system (36)-(37) with $p = 1$, $\sigma = 2$, $\epsilon = \mu = 0.01$, $\beta = 15$, $\nu = 0.093$, $\gamma = 4.44$, $\rho = 0.067$, $\beta_1 = 0.01$, $\beta_2 = 1$, $\beta_3 = 2.59$, $c_0 = 1.2$, wave speed $c = 13.83$ and period $T = 45.15$, obtained after 7 Newton's iterations. In solid line is the numerical simulation at $t = 10$ obtained with the scheme (63)-(64) and in points is the travelling wave computed with the Newton's procedure translated a distance of $10 c$
Figure 3.  Surface plot of the wave elevation $\tilde{\eta}(x,y,t) = \eta(x+\beta y,t)$ in the original system (35) at $t = 0$, with the parameters used in Figure 1
Figure 4.  Surface plot of the wave elevation $\tilde{\eta}(x,y,t) = \eta(x+\beta y,t)$ in the original system (35) at $t = 0$, with the parameters used in Figure 2
Figure 5.  Periodic solution $(\zeta,u)$ of system (53)-(54) with $p = 1$, $\sigma = 1$, $\epsilon = \mu = 0.1$, $\beta = 15$, wave speed $c = 30$ and period $T_0 =52.83$, obtained after 18 Newton's iterations. Observe that this solution satisfies the condition on the wave speed $c^2 > 1+ \beta^2$ as required in Theorem 3.2
Figure 6.  Periodic solution $(\zeta,u)$ of system (53)-(54) with $p = 1$, $\sigma = 1$, $\epsilon = \mu = 0.1$, $\beta = 15$, $b = -0.1482$, wave speed $c = 20$ and period $T_+(1) =31.4879$, obtained after 12 Newton's iterations. Observe that this solution satisfies the condition on the wave speed $c^2 > 1+ \beta^2$ as required in Theorem 3.3
[1]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[2]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[3]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[4]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[5]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[6]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[7]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[8]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[9]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[10]

Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168

[11]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[12]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[13]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[14]

Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems & Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047

[15]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[16]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[17]

Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009

[18]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[19]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[20]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (73)
  • HTML views (195)
  • Cited by (0)

[Back to Top]