• Previous Article
    On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption
  • CPAA Home
  • This Issue
  • Next Article
    Subsonic irrotational inviscid flow around certain bodies with two protruding corners
March  2018, 17(2): 557-578. doi: 10.3934/cpaa.2018030

On the existence and computation of periodic travelling waves for a 2D water wave model

Departamento de Matemáticas, Universidad del Valle, Calle 13 No 100-00, Cali, Colombia

* Corresponding author

Received  February 2017 Revised  July 2017 Published  March 2018

In this work we establish the existence of at least one weak periodic solution in the spatial directions of a nonlinear system of two coupled differential equations associated with a 2D Boussinesq model which describes the evolution of long water waves with small amplitude under the effect of surface tension. For wave speed $0 < |c| < 1$, the problem is reduced to finding a minimum for the corresponding action integral over a closed convex subset of the space $H^{1}_k(\mathbb{R})$ ($k$-periodic functions $f∈ L_k^2(\mathbb{R})$ such that $f' ∈ L_k^2(\mathbb{R})$). For wave speed $|c|>1$, the result is a direct consequence of the Lyapunov Center Theorem since the nonlinear system can be rewritten as a $4× 4$ system with a special Hamiltonian structure. In the case $|c|>1$, we also compute numerical approximations of these travelling waves by using a Fourier spectral discretization of the corresponding 1D travelling wave equations and a Newton-type iteration.

Citation: José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030
References:
[1]

U. M. AsherS. J. Ruuth and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), 797-823.   Google Scholar

[2]

C. Canuto, M. Y. Hussaini and A. Quarteroni, Spectral Methods in Fluid Dynamics Series in Computational Physics, 1988, Springer, Berlin.  Google Scholar

[3]

G. E. KarniadakisM. Israeli and S. A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97 (1991), 414-443.   Google Scholar

[4]

T. Kato, Quasilinear equations of evolution with applications to partial differential equations, Proceedings of the symposium at Dundee, Lecture Notes in Mathematics, 448, Springer, (1975), 25-70.  Google Scholar

[5]

T. Kato, On the Korteweg-de Vries equation, Manuscripta Mathematica, 28 (1979), 89-99.   Google Scholar

[6]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in Applied Mathematics, Advances in Mathematics, Supplementary Studies, 8, Academic Press, (1983), 92-128.  Google Scholar

[7]

J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985), 308-323.   Google Scholar

[8]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body problem 2nd ed. Applied Mathematical Sciences, vol. 90,2009, Springer-Verlag.  Google Scholar

[9]

P. A. Milewski and J. B. Keller, Three dimensional water waves, Studies Appl. Math., 37 (1996), 149-166.   Google Scholar

[10]

L. Paumond, A rigorous link between KP and a Benney-Luke Equation, Diff. Int. Eq., 16 (2003), 1039-1064.   Google Scholar

[11]

J. Quintero, Solitary water waves for a 2D Boussinesq type system, J. Part. Diff. Eqs., 23 (2010), 251-280.   Google Scholar

[12]

J. Quintero, The Cauchy problem and stability of solitary waves for a 2D Boussinesq-KdV type system, Diff. Int. Eqs., 21 (2011), 325-360.   Google Scholar

[13]

J. Quintero, From periodic travelling waves to solitons of a 2D water wave system, Meth. Appl. Anal., 21 (2014), 241-264.   Google Scholar

[14]

J. Quintero, A water wave mixed type problem: existence of periodic travelling waves for a 2D Boussinesq system, Rev. Academia Colombiana de Ciencias Naturales, Físicas y Exactas., 38 (2015), 6-17.   Google Scholar

[15]

J. R. Quintero and R. L. Pego, Two-dimensional solitary waves for a Benney-Luke equation, Physica D., 45 (1999), 476-496.   Google Scholar

[16]

J. G. VerwerJ. G. Blom and W. Hundsdorfer, An implicit-explicit approach for atmospheric transport-chemistry problems, Applied Numerical Mathematics, 20 (1996), 191-209.   Google Scholar

[17]

G. B. Whitham, Linear and Nonlinear Waves Wiley-Interscience, 1974.  Google Scholar

show all references

References:
[1]

U. M. AsherS. J. Ruuth and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), 797-823.   Google Scholar

[2]

C. Canuto, M. Y. Hussaini and A. Quarteroni, Spectral Methods in Fluid Dynamics Series in Computational Physics, 1988, Springer, Berlin.  Google Scholar

[3]

G. E. KarniadakisM. Israeli and S. A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97 (1991), 414-443.   Google Scholar

[4]

T. Kato, Quasilinear equations of evolution with applications to partial differential equations, Proceedings of the symposium at Dundee, Lecture Notes in Mathematics, 448, Springer, (1975), 25-70.  Google Scholar

[5]

T. Kato, On the Korteweg-de Vries equation, Manuscripta Mathematica, 28 (1979), 89-99.   Google Scholar

[6]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in Applied Mathematics, Advances in Mathematics, Supplementary Studies, 8, Academic Press, (1983), 92-128.  Google Scholar

[7]

J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985), 308-323.   Google Scholar

[8]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body problem 2nd ed. Applied Mathematical Sciences, vol. 90,2009, Springer-Verlag.  Google Scholar

[9]

P. A. Milewski and J. B. Keller, Three dimensional water waves, Studies Appl. Math., 37 (1996), 149-166.   Google Scholar

[10]

L. Paumond, A rigorous link between KP and a Benney-Luke Equation, Diff. Int. Eq., 16 (2003), 1039-1064.   Google Scholar

[11]

J. Quintero, Solitary water waves for a 2D Boussinesq type system, J. Part. Diff. Eqs., 23 (2010), 251-280.   Google Scholar

[12]

J. Quintero, The Cauchy problem and stability of solitary waves for a 2D Boussinesq-KdV type system, Diff. Int. Eqs., 21 (2011), 325-360.   Google Scholar

[13]

J. Quintero, From periodic travelling waves to solitons of a 2D water wave system, Meth. Appl. Anal., 21 (2014), 241-264.   Google Scholar

[14]

J. Quintero, A water wave mixed type problem: existence of periodic travelling waves for a 2D Boussinesq system, Rev. Academia Colombiana de Ciencias Naturales, Físicas y Exactas., 38 (2015), 6-17.   Google Scholar

[15]

J. R. Quintero and R. L. Pego, Two-dimensional solitary waves for a Benney-Luke equation, Physica D., 45 (1999), 476-496.   Google Scholar

[16]

J. G. VerwerJ. G. Blom and W. Hundsdorfer, An implicit-explicit approach for atmospheric transport-chemistry problems, Applied Numerical Mathematics, 20 (1996), 191-209.   Google Scholar

[17]

G. B. Whitham, Linear and Nonlinear Waves Wiley-Interscience, 1974.  Google Scholar

Figure 1.  Periodic travelling wave solution $(\eta,\varphi)$ of system (36)-(37) with $p = 1$, $\sigma = 0.52$, $\epsilon = \mu = 0.01$, $\beta = 50$, $\nu = 0.093$, $\gamma = 4.44$, $\rho = 0.02$, $\beta_1 = 0.01$, $\beta_2 = 1$, $\beta_3 = 2.59$, $c_0 = 1.2$, wave speed $c = 48.81$ and period $T = 91.7$, obtained after 6 Newton's iterations. In solid line is the numerical simulation at $t = 10$ obtained with the scheme (63)-(64) and in points is the travelling wave computed with the Newton's procedure translated a distance of $10 c$
Figure 2.  Periodic travelling wave solution $(\eta,\varphi)$ of system (36)-(37) with $p = 1$, $\sigma = 2$, $\epsilon = \mu = 0.01$, $\beta = 15$, $\nu = 0.093$, $\gamma = 4.44$, $\rho = 0.067$, $\beta_1 = 0.01$, $\beta_2 = 1$, $\beta_3 = 2.59$, $c_0 = 1.2$, wave speed $c = 13.83$ and period $T = 45.15$, obtained after 7 Newton's iterations. In solid line is the numerical simulation at $t = 10$ obtained with the scheme (63)-(64) and in points is the travelling wave computed with the Newton's procedure translated a distance of $10 c$
Figure 1">Figure 3.  Surface plot of the wave elevation $\tilde{\eta}(x,y,t) = \eta(x+\beta y,t)$ in the original system (35) at $t = 0$, with the parameters used in Figure 1
Figure 2">Figure 4.  Surface plot of the wave elevation $\tilde{\eta}(x,y,t) = \eta(x+\beta y,t)$ in the original system (35) at $t = 0$, with the parameters used in Figure 2
Figure 5.  Periodic solution $(\zeta,u)$ of system (53)-(54) with $p = 1$, $\sigma = 1$, $\epsilon = \mu = 0.1$, $\beta = 15$, wave speed $c = 30$ and period $T_0 =52.83$, obtained after 18 Newton's iterations. Observe that this solution satisfies the condition on the wave speed $c^2 > 1+ \beta^2$ as required in Theorem 3.2
Figure 6.  Periodic solution $(\zeta,u)$ of system (53)-(54) with $p = 1$, $\sigma = 1$, $\epsilon = \mu = 0.1$, $\beta = 15$, $b = -0.1482$, wave speed $c = 20$ and period $T_+(1) =31.4879$, obtained after 12 Newton's iterations. Observe that this solution satisfies the condition on the wave speed $c^2 > 1+ \beta^2$ as required in Theorem 3.3
[1]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021008

[2]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[3]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[4]

Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021075

[5]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[6]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[7]

Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037

[8]

Sarra Delladji, Mohammed Belloufi, Badreddine Sellami. Behavior of the combination of PRP and HZ methods for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 377-389. doi: 10.3934/naco.2020032

[9]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008

[10]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

[11]

Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021055

[12]

Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021036

[13]

Abdeslem Hafid Bentbib, Smahane El-Halouy, El Mostafa Sadek. Extended Krylov subspace methods for solving Sylvester and Stein tensor equations. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021026

[14]

Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021014

[15]

Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021011

[16]

Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063

[17]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021017

[18]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[19]

Tengteng Yu, Xin-Wei Liu, Yu-Hong Dai, Jie Sun. Variable metric proximal stochastic variance reduced gradient methods for nonconvex nonsmooth optimization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021084

[20]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (81)
  • HTML views (196)
  • Cited by (0)

[Back to Top]