• Previous Article
    A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates
  • CPAA Home
  • This Issue
  • Next Article
    Convergent approximation of non-continuous surfaces of prescribed Gaussian curvature
March  2018, 17(2): 647-669. doi: 10.3934/cpaa.2018035

Approximation of a nonlinear fractal energy functional on varying Hilbert spaces

1. 

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Universitá degli studi di Roma Sapienza, Via A. Scarpa 16,00161 Roma, Italy

2. 

Department of Mathematical Sciences, University of Puerto Rico at Mayagüez, Puerto Rico, 00681, USA

3. 

Dipartimento di Matematica, Universitá degli Studi di Roma Sapienza, Piazzale Aldo Moro 2,00185 Roma, Italy

* Corresponding author: Maria Rosaria Lancia

Received  November 2016 Revised  July 2017 Published  March 2018

We study a quasi-linear evolution equation with nonlinear dynamical boundary conditions in a two dimensional domain with Koch-type fractal boundary. We consider suitable approximating pre-fractal problems in the corresponding pre-fractal varying domains. After proving existence and uniqueness results via standard semigroup approach, we prove that the pre-fractal solutions converge in a suitable sense to the limit fractal one via the Mosco convergence of the energy functionals adapted by Tölle to the nonlinear framework in varying Hilbert spaces.

Citation: Simone Creo, Maria Rosaria Lancia, Alejandro Vélez-Santiago, Paola Vernole. Approximation of a nonlinear fractal energy functional on varying Hilbert spaces. Communications on Pure & Applied Analysis, 2018, 17 (2) : 647-669. doi: 10.3934/cpaa.2018035
References:
[1] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer-Verlag, Berlin, 1966.
[2]

D. E. Apushkinskaya and A. I. Nazarov, The Venttsel' problem for nonlinear elliptic equations, J. Math. Sci. (New York), 101 (2000), 2861-2880. Google Scholar

[3]

H. Attouch, Familles d'oprateurs maximaux monotones et mesurabilité, Ann. Mat. Pura e Applicata, 120 (1979), 35-111. Google Scholar

[4] C. Baiocchi and C. Baiocchi, Variational and Quasivariational Inequalities: Applications to Free{Boundary Value Problems, Wiley, New York, 1984.
[5]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces Translated from the Romanian, Noordhoff International Publishing, Leiden, 1976. Google Scholar

[6]

H. Brézis, Propriétés régularisantes de certains semi-groupes non linéaires, Israel J. Math., 9 (1971), 513-534. Google Scholar

[7]

H. Brézis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Funct. Anal., 9 (1972), 63-74. Google Scholar

[8]

F. Brezzi and G. Gilardi, Fundamentals of P. D. E. for Numerical Analysis in: Finite Element Handbook (ed. : H. Kardestuncer and D. H. Norrie), McGraw-Hill Book Co., New York, 1987. Google Scholar

[9]

R. Capitanelli, Lagrangians on Homogeneous Spaces Ph. D thesis, Universitá degli Studi di Roma "La Sapienza", 2002.Google Scholar

[10]

R. Capitanelli, Nonlinear energy forms on certain fractal curves, J. Nonlinear Convex Anal., 3 (2002), 67-80. Google Scholar

[11]

M. CefaloM. R. Lancia and H. Liang, Heat flow problems across fractal mixtures: regularity results of the solutions and numerical approximation, Differ. Integral Equ., 26 (2013), 1027-1054. Google Scholar

[12]

P. Ciarlet, Basic Error Estimates for Elliptic Problems, in: Handbook of Numerical Analysis Ⅱ (ed. : P. Ciarlet and J. J. Lions), North-Holland, Amsterdam, 1991, 16-351. Google Scholar

[13]

J. I. Díaz and L. Tello, On a climate model with a dynamic nonlinear diffusive boundary condition, Discrete Contin. Dyn. Syst., 1 (2009), 253-262. Google Scholar

[14] K. Falconer, The Geometry of Fractal Sets, 2nd edition, Cambridge University Press, 1990.
[15]

U. Freiberg and M. R. Lancia, Energy form on a closed fractal curve, Z. Anal. Anwendingen., 23 (2004), 115-135. Google Scholar

[16]

C. Gal and A. Miranville, Uniform global attractors for non-isothermal viscous and non-viscous Cahn-Hilliard equations with dynamic boundary conditions, Nonlinear Anal. Real World Appl., 10 (2009), 1738-1766. Google Scholar

[17]

P. Grisvard, Théorémes de traces relatifs á un polyédre, C. R. Acad. Sci. Paris Sér. A, 278 (1974), 581-1583. Google Scholar

[18]

D. Jerison and C. E. Kenig, The Neumann problem in Lipschitz domains, Bull. Amer. Math. Soc., 4 (1981), 203-207. Google Scholar

[19]

P. W. Jones, Quasiconformal mapping and extendability of functions in Sobolev spaces, Acta Math., 147 (1981), 71-88. Google Scholar

[20]

A. Jonsson and H. Wallin, Function Spaces on Subsets of $\mathbb{R}^n$ Math. Reports, vol. 2, Harwood Acad. Publ., London, 1984. Google Scholar

[21]

A. Jonsson and H. Wallin, The dual of Besov spaces on fractals, Studia Math., 112 (1995), 285-300. Google Scholar

[22]

A. V. Kolesnikov, Convergence of Dirichlet forms with changing speed measures on $\mathbb{R}^d$, Forum Math., 17 (2005), 225-259. Google Scholar

[23]

S. M. Kozlov, Harmonization and homogenization on fractals, Comm. Math. Phys., 153 (1993), 339-357. Google Scholar

[24]

S. Kusuoka, Lecture on Diffusion Processes on Nested Fractals In: Statistical Mechanics and Fractals, Lecture Notes in Mathematics, vol 1567, Springer, Berlin, Heidelberg, 1993. Google Scholar

[25]

K. Kuwae and T. Shioya, Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry, Comm. Anal. Geom., 11 (2003), 599-673. Google Scholar

[26]

M. R. LanciaV. Regis Durante and P. Vernole, Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1493-1520. Google Scholar

[27]

M. R. LanciaA. Vélez-Santiago and P. Vernole, Quasi-linear Venttsel' problems with nonlocal boundary conditions, Nonlinear Anal. Real World Appl., 35 (2017), 265-291. Google Scholar

[28]

M. R. Lancia and P. Vernole, Irregular heat flow problems, SIAM J. on Mathematical Analysis, 42 (2010), 1539-1567. Google Scholar

[29]

M. R. Lancia and P. Vernole, Semilinear evolution transmission problems across fractal layers, Nonlinear Anal., 75 (2012), 4222-4240. Google Scholar

[30]

M. R. Lancia and P. Vernole, Venttsel' problems in fractal domains, J. Evol. Equ., 14 (2014), 681-712. Google Scholar

[31]

V. Lappalainen and A. Lehtonen, Embedding of Orliz-Sobolev spaces in Hölder spaces, Annales Academiæ Scientiarum Fennicæ, 14 (1989), 41-46. Google Scholar

[32]

U. Mosco, Convergence of convex sets and solutions of variational inequalities, Adv. in Math., 3 (1969), 510-585. Google Scholar

[33]

U. Mosco, Composite media and asymptotic Dirichlet forms, J. Funct. Anal., 123 (1994), 368-421. Google Scholar

[34]

U. Mosco, Analysis and numerics of some fractal boundary value problems, Analysis and numerics of partial differential equations, Springer INdAM Ser., 4 (2013), 237-255. Google Scholar

[35]

J. Necas, Les Méthodes Directes en Théorie des Èquationes Elliptiques Masson, Paris, 1967. Google Scholar

[36]

J. M. Tölle, Variational Convergence of Nonlinear Partial Differential Operators on Varying Banach Spaces Ph. D thesis, Universit ät Bielefeld, 2010.Google Scholar

[37]

H. Triebel, Fractals and Spectra Related to Fourier Analysis and Function Spaces Monographs in Mathematics, vol. 91, Birkhäuser, Basel, 1997. Google Scholar

[38]

A. Vélez-Santiago, Quasi-linear variable exponent boundary value problems with Wentzell-Robin and Wentzell boundary conditions, J. Functional Analysis, 266 (2014), 560-615. Google Scholar

[39]

A. Vélez-Santiago, On the well-posedness of first-order variable exponent Cauchy problems with Robin and Wentzell-Robin boundary conditions on arbitrary domains, J. Abstr. Differ. Equ. Appl., 6 (2015), 1-20. Google Scholar

[40]

A. D. Venttsel', On boundary conditions for multidimensional diffusion processes, Teor. Veroyatnost. i Primenen., 4 (1959), 172{185; English translation: Theor. Probability Appl., 4 (1959), 164{177. Google Scholar

[41]

H. Wallin, The trace to the boundary of Sobolev spaces on a snowflake, Manuscripta Math., 73 (1991), 117-125. Google Scholar

[42]

M. Warma, Regularity and well-posedness of some quasi-linear elliptic and parabolic problems with nonlinear general Wentzell boundary conditions on nonsmooth domains, Nonlinear Analysis, 14 (2012), 5561-5588. Google Scholar

show all references

References:
[1] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer-Verlag, Berlin, 1966.
[2]

D. E. Apushkinskaya and A. I. Nazarov, The Venttsel' problem for nonlinear elliptic equations, J. Math. Sci. (New York), 101 (2000), 2861-2880. Google Scholar

[3]

H. Attouch, Familles d'oprateurs maximaux monotones et mesurabilité, Ann. Mat. Pura e Applicata, 120 (1979), 35-111. Google Scholar

[4] C. Baiocchi and C. Baiocchi, Variational and Quasivariational Inequalities: Applications to Free{Boundary Value Problems, Wiley, New York, 1984.
[5]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces Translated from the Romanian, Noordhoff International Publishing, Leiden, 1976. Google Scholar

[6]

H. Brézis, Propriétés régularisantes de certains semi-groupes non linéaires, Israel J. Math., 9 (1971), 513-534. Google Scholar

[7]

H. Brézis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Funct. Anal., 9 (1972), 63-74. Google Scholar

[8]

F. Brezzi and G. Gilardi, Fundamentals of P. D. E. for Numerical Analysis in: Finite Element Handbook (ed. : H. Kardestuncer and D. H. Norrie), McGraw-Hill Book Co., New York, 1987. Google Scholar

[9]

R. Capitanelli, Lagrangians on Homogeneous Spaces Ph. D thesis, Universitá degli Studi di Roma "La Sapienza", 2002.Google Scholar

[10]

R. Capitanelli, Nonlinear energy forms on certain fractal curves, J. Nonlinear Convex Anal., 3 (2002), 67-80. Google Scholar

[11]

M. CefaloM. R. Lancia and H. Liang, Heat flow problems across fractal mixtures: regularity results of the solutions and numerical approximation, Differ. Integral Equ., 26 (2013), 1027-1054. Google Scholar

[12]

P. Ciarlet, Basic Error Estimates for Elliptic Problems, in: Handbook of Numerical Analysis Ⅱ (ed. : P. Ciarlet and J. J. Lions), North-Holland, Amsterdam, 1991, 16-351. Google Scholar

[13]

J. I. Díaz and L. Tello, On a climate model with a dynamic nonlinear diffusive boundary condition, Discrete Contin. Dyn. Syst., 1 (2009), 253-262. Google Scholar

[14] K. Falconer, The Geometry of Fractal Sets, 2nd edition, Cambridge University Press, 1990.
[15]

U. Freiberg and M. R. Lancia, Energy form on a closed fractal curve, Z. Anal. Anwendingen., 23 (2004), 115-135. Google Scholar

[16]

C. Gal and A. Miranville, Uniform global attractors for non-isothermal viscous and non-viscous Cahn-Hilliard equations with dynamic boundary conditions, Nonlinear Anal. Real World Appl., 10 (2009), 1738-1766. Google Scholar

[17]

P. Grisvard, Théorémes de traces relatifs á un polyédre, C. R. Acad. Sci. Paris Sér. A, 278 (1974), 581-1583. Google Scholar

[18]

D. Jerison and C. E. Kenig, The Neumann problem in Lipschitz domains, Bull. Amer. Math. Soc., 4 (1981), 203-207. Google Scholar

[19]

P. W. Jones, Quasiconformal mapping and extendability of functions in Sobolev spaces, Acta Math., 147 (1981), 71-88. Google Scholar

[20]

A. Jonsson and H. Wallin, Function Spaces on Subsets of $\mathbb{R}^n$ Math. Reports, vol. 2, Harwood Acad. Publ., London, 1984. Google Scholar

[21]

A. Jonsson and H. Wallin, The dual of Besov spaces on fractals, Studia Math., 112 (1995), 285-300. Google Scholar

[22]

A. V. Kolesnikov, Convergence of Dirichlet forms with changing speed measures on $\mathbb{R}^d$, Forum Math., 17 (2005), 225-259. Google Scholar

[23]

S. M. Kozlov, Harmonization and homogenization on fractals, Comm. Math. Phys., 153 (1993), 339-357. Google Scholar

[24]

S. Kusuoka, Lecture on Diffusion Processes on Nested Fractals In: Statistical Mechanics and Fractals, Lecture Notes in Mathematics, vol 1567, Springer, Berlin, Heidelberg, 1993. Google Scholar

[25]

K. Kuwae and T. Shioya, Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry, Comm. Anal. Geom., 11 (2003), 599-673. Google Scholar

[26]

M. R. LanciaV. Regis Durante and P. Vernole, Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1493-1520. Google Scholar

[27]

M. R. LanciaA. Vélez-Santiago and P. Vernole, Quasi-linear Venttsel' problems with nonlocal boundary conditions, Nonlinear Anal. Real World Appl., 35 (2017), 265-291. Google Scholar

[28]

M. R. Lancia and P. Vernole, Irregular heat flow problems, SIAM J. on Mathematical Analysis, 42 (2010), 1539-1567. Google Scholar

[29]

M. R. Lancia and P. Vernole, Semilinear evolution transmission problems across fractal layers, Nonlinear Anal., 75 (2012), 4222-4240. Google Scholar

[30]

M. R. Lancia and P. Vernole, Venttsel' problems in fractal domains, J. Evol. Equ., 14 (2014), 681-712. Google Scholar

[31]

V. Lappalainen and A. Lehtonen, Embedding of Orliz-Sobolev spaces in Hölder spaces, Annales Academiæ Scientiarum Fennicæ, 14 (1989), 41-46. Google Scholar

[32]

U. Mosco, Convergence of convex sets and solutions of variational inequalities, Adv. in Math., 3 (1969), 510-585. Google Scholar

[33]

U. Mosco, Composite media and asymptotic Dirichlet forms, J. Funct. Anal., 123 (1994), 368-421. Google Scholar

[34]

U. Mosco, Analysis and numerics of some fractal boundary value problems, Analysis and numerics of partial differential equations, Springer INdAM Ser., 4 (2013), 237-255. Google Scholar

[35]

J. Necas, Les Méthodes Directes en Théorie des Èquationes Elliptiques Masson, Paris, 1967. Google Scholar

[36]

J. M. Tölle, Variational Convergence of Nonlinear Partial Differential Operators on Varying Banach Spaces Ph. D thesis, Universit ät Bielefeld, 2010.Google Scholar

[37]

H. Triebel, Fractals and Spectra Related to Fourier Analysis and Function Spaces Monographs in Mathematics, vol. 91, Birkhäuser, Basel, 1997. Google Scholar

[38]

A. Vélez-Santiago, Quasi-linear variable exponent boundary value problems with Wentzell-Robin and Wentzell boundary conditions, J. Functional Analysis, 266 (2014), 560-615. Google Scholar

[39]

A. Vélez-Santiago, On the well-posedness of first-order variable exponent Cauchy problems with Robin and Wentzell-Robin boundary conditions on arbitrary domains, J. Abstr. Differ. Equ. Appl., 6 (2015), 1-20. Google Scholar

[40]

A. D. Venttsel', On boundary conditions for multidimensional diffusion processes, Teor. Veroyatnost. i Primenen., 4 (1959), 172{185; English translation: Theor. Probability Appl., 4 (1959), 164{177. Google Scholar

[41]

H. Wallin, The trace to the boundary of Sobolev spaces on a snowflake, Manuscripta Math., 73 (1991), 117-125. Google Scholar

[42]

M. Warma, Regularity and well-posedness of some quasi-linear elliptic and parabolic problems with nonlinear general Wentzell boundary conditions on nonsmooth domains, Nonlinear Analysis, 14 (2012), 5561-5588. Google Scholar

Figure 1.  The Koch snowflake
[1]

Zhong Tan, Zheng-An Yao. The existence and asymptotic behavior of the evolution p-Laplacian equations with strong nonlinear sources. Communications on Pure & Applied Analysis, 2004, 3 (3) : 475-490. doi: 10.3934/cpaa.2004.3.475

[2]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[3]

Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055

[4]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[5]

Simone Creo, Valerio Regis Durante. Convergence and density results for parabolic quasi-linear Venttsel' problems in fractal domains. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 65-90. doi: 10.3934/dcdss.2019005

[6]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[7]

Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254

[8]

Julián Fernández Bonder, Julio D. Rossi. Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains. Communications on Pure & Applied Analysis, 2002, 1 (3) : 359-378. doi: 10.3934/cpaa.2002.1.359

[9]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[10]

Kanishka Perera, Andrzej Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 743-753. doi: 10.3934/dcds.2005.13.743

[11]

Francisco Odair de Paiva, Humberto Ramos Quoirin. Resonance and nonresonance for p-Laplacian problems with weighted eigenvalues conditions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1219-1227. doi: 10.3934/dcds.2009.25.1219

[12]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[13]

Irene Benedetti, Luisa Malaguti, Valentina Taddei. Nonlocal problems in Hilbert spaces. Conference Publications, 2015, 2015 (special) : 103-111. doi: 10.3934/proc.2015.0103

[14]

Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075

[15]

C. Fabry, Raul Manásevich. Equations with a $p$-Laplacian and an asymmetric nonlinear term. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 545-557. doi: 10.3934/dcds.2001.7.545

[16]

Hugo Beirão da Veiga, Francesca Crispo. On the global regularity for nonlinear systems of the $p$-Laplacian type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1173-1191. doi: 10.3934/dcdss.2013.6.1173

[17]

Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729

[18]

E. N. Dancer, Zhitao Zhang. Critical point, anti-maximum principle and semipositone p-laplacian problems. Conference Publications, 2005, 2005 (Special) : 209-215. doi: 10.3934/proc.2005.2005.209

[19]

Leszek Gasiński. Positive solutions for resonant boundary value problems with the scalar p-Laplacian and nonsmooth potential. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 143-158. doi: 10.3934/dcds.2007.17.143

[20]

Maria Rosaria Lancia, Alejandro Vélez-Santiago, Paola Vernole. A quasi-linear nonlocal Venttsel' problem of Ambrosetti–Prodi type on fractal domains. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4487-4518. doi: 10.3934/dcds.2019184

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (31)
  • HTML views (113)
  • Cited by (0)

[Back to Top]