\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Approximation of a nonlinear fractal energy functional on varying Hilbert spaces

  • * Corresponding author: Maria Rosaria Lancia

    * Corresponding author: Maria Rosaria Lancia 
Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • We study a quasi-linear evolution equation with nonlinear dynamical boundary conditions in a two dimensional domain with Koch-type fractal boundary. We consider suitable approximating pre-fractal problems in the corresponding pre-fractal varying domains. After proving existence and uniqueness results via standard semigroup approach, we prove that the pre-fractal solutions converge in a suitable sense to the limit fractal one via the Mosco convergence of the energy functionals adapted by Tölle to the nonlinear framework in varying Hilbert spaces.

    Mathematics Subject Classification: Primary:35K, 28A80;Secondary:37L05, 31C25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The Koch snowflake

  • [1] D. R. Adams and  L. I. HedbergFunction Spaces and Potential Theory, Springer-Verlag, Berlin, 1966. 
    [2] D. E. Apushkinskaya and A. I. Nazarov, The Venttsel' problem for nonlinear elliptic equations, J. Math. Sci. (New York), 101 (2000), 2861-2880. 
    [3] H. Attouch, Familles d'oprateurs maximaux monotones et mesurabilité, Ann. Mat. Pura e Applicata, 120 (1979), 35-111. 
    [4] C. Baiocchi and  C. BaiocchiVariational and Quasivariational Inequalities: Applications to Free{Boundary Value Problems, Wiley, New York, 1984. 
    [5] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces Translated from the Romanian, Noordhoff International Publishing, Leiden, 1976.
    [6] H. Brézis, Propriétés régularisantes de certains semi-groupes non linéaires, Israel J. Math., 9 (1971), 513-534. 
    [7] H. Brézis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Funct. Anal., 9 (1972), 63-74. 
    [8] F. Brezzi and G. Gilardi, Fundamentals of P. D. E. for Numerical Analysis in: Finite Element Handbook (ed. : H. Kardestuncer and D. H. Norrie), McGraw-Hill Book Co., New York, 1987.
    [9] R. Capitanelli, Lagrangians on Homogeneous Spaces Ph. D thesis, Universitá degli Studi di Roma "La Sapienza", 2002.
    [10] R. Capitanelli, Nonlinear energy forms on certain fractal curves, J. Nonlinear Convex Anal., 3 (2002), 67-80. 
    [11] M. CefaloM. R. Lancia and H. Liang, Heat flow problems across fractal mixtures: regularity results of the solutions and numerical approximation, Differ. Integral Equ., 26 (2013), 1027-1054. 
    [12] P. Ciarlet, Basic Error Estimates for Elliptic Problems, in: Handbook of Numerical Analysis Ⅱ (ed. : P. Ciarlet and J. J. Lions), North-Holland, Amsterdam, 1991, 16-351.
    [13] J. I. Díaz and L. Tello, On a climate model with a dynamic nonlinear diffusive boundary condition, Discrete Contin. Dyn. Syst., 1 (2009), 253-262. 
    [14] K. FalconerThe Geometry of Fractal Sets, 2nd edition, Cambridge University Press, 1990. 
    [15] U. Freiberg and M. R. Lancia, Energy form on a closed fractal curve, Z. Anal. Anwendingen., 23 (2004), 115-135. 
    [16] C. Gal and A. Miranville, Uniform global attractors for non-isothermal viscous and non-viscous Cahn-Hilliard equations with dynamic boundary conditions, Nonlinear Anal. Real World Appl., 10 (2009), 1738-1766. 
    [17] P. Grisvard, Théorémes de traces relatifs á un polyédre, C. R. Acad. Sci. Paris Sér. A, 278 (1974), 581-1583. 
    [18] D. Jerison and C. E. Kenig, The Neumann problem in Lipschitz domains, Bull. Amer. Math. Soc., 4 (1981), 203-207. 
    [19] P. W. Jones, Quasiconformal mapping and extendability of functions in Sobolev spaces, Acta Math., 147 (1981), 71-88. 
    [20] A. Jonsson and H. Wallin, Function Spaces on Subsets of $\mathbb{R}^n$ Math. Reports, vol. 2, Harwood Acad. Publ., London, 1984.
    [21] A. Jonsson and H. Wallin, The dual of Besov spaces on fractals, Studia Math., 112 (1995), 285-300. 
    [22] A. V. Kolesnikov, Convergence of Dirichlet forms with changing speed measures on $\mathbb{R}^d$, Forum Math., 17 (2005), 225-259. 
    [23] S. M. Kozlov, Harmonization and homogenization on fractals, Comm. Math. Phys., 153 (1993), 339-357. 
    [24] S. Kusuoka, Lecture on Diffusion Processes on Nested Fractals In: Statistical Mechanics and Fractals, Lecture Notes in Mathematics, vol 1567, Springer, Berlin, Heidelberg, 1993.
    [25] K. Kuwae and T. Shioya, Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry, Comm. Anal. Geom., 11 (2003), 599-673. 
    [26] M. R. LanciaV. Regis Durante and P. Vernole, Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1493-1520. 
    [27] M. R. LanciaA. Vélez-Santiago and P. Vernole, Quasi-linear Venttsel' problems with nonlocal boundary conditions, Nonlinear Anal. Real World Appl., 35 (2017), 265-291. 
    [28] M. R. Lancia and P. Vernole, Irregular heat flow problems, SIAM J. on Mathematical Analysis, 42 (2010), 1539-1567. 
    [29] M. R. Lancia and P. Vernole, Semilinear evolution transmission problems across fractal layers, Nonlinear Anal., 75 (2012), 4222-4240. 
    [30] M. R. Lancia and P. Vernole, Venttsel' problems in fractal domains, J. Evol. Equ., 14 (2014), 681-712. 
    [31] V. Lappalainen and A. Lehtonen, Embedding of Orliz-Sobolev spaces in Hölder spaces, Annales Academiæ Scientiarum Fennicæ, 14 (1989), 41-46. 
    [32] U. Mosco, Convergence of convex sets and solutions of variational inequalities, Adv. in Math., 3 (1969), 510-585. 
    [33] U. Mosco, Composite media and asymptotic Dirichlet forms, J. Funct. Anal., 123 (1994), 368-421. 
    [34] U. Mosco, Analysis and numerics of some fractal boundary value problems, Analysis and numerics of partial differential equations, Springer INdAM Ser., 4 (2013), 237-255. 
    [35] J. Necas, Les Méthodes Directes en Théorie des Èquationes Elliptiques Masson, Paris, 1967.
    [36] J. M. Tölle, Variational Convergence of Nonlinear Partial Differential Operators on Varying Banach Spaces Ph. D thesis, Universit ät Bielefeld, 2010.
    [37] H. Triebel, Fractals and Spectra Related to Fourier Analysis and Function Spaces Monographs in Mathematics, vol. 91, Birkhäuser, Basel, 1997.
    [38] A. Vélez-Santiago, Quasi-linear variable exponent boundary value problems with Wentzell-Robin and Wentzell boundary conditions, J. Functional Analysis, 266 (2014), 560-615. 
    [39] A. Vélez-Santiago, On the well-posedness of first-order variable exponent Cauchy problems with Robin and Wentzell-Robin boundary conditions on arbitrary domains, J. Abstr. Differ. Equ. Appl., 6 (2015), 1-20. 
    [40] A. D. Venttsel', On boundary conditions for multidimensional diffusion processes, Teor. Veroyatnost. i Primenen., 4 (1959), 172{185; English translation: Theor. Probability Appl., 4 (1959), 164{177.
    [41] H. Wallin, The trace to the boundary of Sobolev spaces on a snowflake, Manuscripta Math., 73 (1991), 117-125. 
    [42] M. Warma, Regularity and well-posedness of some quasi-linear elliptic and parabolic problems with nonlinear general Wentzell boundary conditions on nonsmooth domains, Nonlinear Analysis, 14 (2012), 5561-5588. 
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(648) PDF downloads(356) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return