May  2018, 17(3): 729-749. doi: 10.3934/cpaa.2018038

Random attractors for stochastic parabolic equations with additive noise in weighted spaces

1. 

School of Science, Hohai University, Nanjing, Jiangsu 210098, China

2. 

School of Mathematics and Information Science, Shandong Technology and Business University, Yantai, Shandong 264005, China

3. 

Department of Mathematics, Brigham Young University, Provo, Utah 84602, USA

* Corresponding author: Xiaojun Li

Received  March 2017 Revised  August 2017 Published  January 2018

In this paper, we establish the existence of random attractors for stochastic parabolic equations driven by additive noise as well as deterministic non-autonomous forcing terms in weighted Lebesgue spaces $ L_{\delta}^r(\mathcal{O})$, where $ 1<r<\infty ,\ \delta$ is the distance from $ x$ to the boundary. The nonlinearity $ f(x,u)$ of equation depending on the spatial variable does not have the bound on the derivative in $ u$, and then causes critical exponent. In both subcritical and critical cases, we get the well-posedness and dissipativeness of the problem under consideration and, by smoothing property of heat semigroup in weighted space, the asymptotical compactness of random dynamical system corresponding to the original system.

Citation: Xiaojun Li, Xiliang Li, Kening Lu. Random attractors for stochastic parabolic equations with additive noise in weighted spaces. Communications on Pure & Applied Analysis, 2018, 17 (3) : 729-749. doi: 10.3934/cpaa.2018038
References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998. Google Scholar

[2]

J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critial nonlinearities and applications to Navier-Stokes and heat equatins, Trans. Amer. Math. Soc., 352 (1999), 285-310. Google Scholar

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations, North-Holland, Amsterdam, 1992. Google Scholar

[4]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. Google Scholar

[5]

P. W. BatesK. Lu and B. Wang, Tempered random attractors for parabolic equations in weighted spaces, J. Math. Phys., 54 (2013), 081505. Google Scholar

[6]

H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math., 68 (1996), 277-304. Google Scholar

[7]

D. CaoC. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872. Google Scholar

[8]

T. CaraballoG. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498. Google Scholar

[9]

A. N. Carvalho and J. W. Cholewa, Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities, J. Math. Anal. Appl., 310 (2005), 557-578. Google Scholar

[10]

D. ChebanP. E. Kloeden and B. Schmalfuß, The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2 (2002), 9-28. Google Scholar

[11]

M. D. ChekrounaE. Parkb and R. Temam, The Stampacchia maximum principle for stochastic partial differential equations and applications, J. Differential Equations, 260 (2016), 2926-2972. Google Scholar

[12]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ., Vol. 49, Amer. Math. Soc., Providence, RI, 2002. Google Scholar

[13]

I. Chueshov, Monotone Random Systems Theory and Applications, Lecture Notes in Mathematics, vol. 1779,2002. Google Scholar

[14]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341. Google Scholar

[15]

H. Crauel and F. Flandoli, Attractor for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. Google Scholar

[16]

H. CuiLanga and A. José, Uniform attractors for non-autonomous random dynamical systems, J. Differential Equations, 263 (2017), 1225-1268. Google Scholar

[17]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, 1992. Google Scholar

[18]

M. FilaP. Souplet and F. B. Weissler, Linear and nonlinear heat equations in $ L^q_{\delta }$ spaces and universal bounds for global solutions, Math. Ann., 320 (2001), 87-113. Google Scholar

[19]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45. Google Scholar

[20]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence. RI, 1988. Google Scholar

[21]

M. Loayza, The heat equation with singular nonlinearity and singular initial data, J. Differential Equations, 229 (2006), 509-528. Google Scholar

[22]

X. Li, Non-autonomous parabolic problems with singular initial data in weighted spaces, Rocky Mountain J. Math., 42 (2012), 1215-1245. Google Scholar

[23]

X. Li and L. Ren, Dynamics of non-autonomous parabolic problems with subcritical and critical nonlinearities, Bull. Sci. math., 138 (2014), 540-564. Google Scholar

[24]

X. Li and S. Ruan, Attractors for non-autonomous parabolic problems with singular initial data, J. Differential Equations, 251 (2011), 728-757. Google Scholar

[25]

B. K. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer-Verlay, New York, 1995, 4th ed. Google Scholar

[26]

P. Quittner and P. Souplet, A priori estimates and existence for elliptic systems via bootstrap in weighted Lebesgue spaces, Arch. Rational Mech. Anal., 174 (2004), 49-81. Google Scholar

[27]

G. R. Sell and Y. C. You, Dynamics of Evolutionary Equations, Springer-Verlay, New York, 2002. Google Scholar

[28]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. Google Scholar

[29]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. Google Scholar

[30]

X. WangK. Lu and B. Wang, Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing, SIAM J. Appl. Dyn. Syst., 14 (2015), 1018-1047. Google Scholar

[31]

Y. Wang and J. Wang, Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Differential Equations, 259 (2015), 728-776. Google Scholar

[32]

M. Yang and P. E. Kloeden, Random attractors for stochastic semi-linear degenerate parabolic equations., Nonlinear Anal. Real World Appl., 12 (2011), 2811-2821. Google Scholar

[33]

W. Zhao, $ {\rm{H}}^1$-random attractorsfor stochastic reaction diffusion equations with additive noise, Nonlinear Anal., 84 (2013), 61-72. Google Scholar

[34]

W. Zhao and Y. Li, Random attractors for stochastic semi-linear degenerate parabolic equations with additive noises, Dyn. Partial Differ. Equ., 11 (2014), 269-298. Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998. Google Scholar

[2]

J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critial nonlinearities and applications to Navier-Stokes and heat equatins, Trans. Amer. Math. Soc., 352 (1999), 285-310. Google Scholar

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations, North-Holland, Amsterdam, 1992. Google Scholar

[4]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. Google Scholar

[5]

P. W. BatesK. Lu and B. Wang, Tempered random attractors for parabolic equations in weighted spaces, J. Math. Phys., 54 (2013), 081505. Google Scholar

[6]

H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math., 68 (1996), 277-304. Google Scholar

[7]

D. CaoC. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872. Google Scholar

[8]

T. CaraballoG. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498. Google Scholar

[9]

A. N. Carvalho and J. W. Cholewa, Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities, J. Math. Anal. Appl., 310 (2005), 557-578. Google Scholar

[10]

D. ChebanP. E. Kloeden and B. Schmalfuß, The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2 (2002), 9-28. Google Scholar

[11]

M. D. ChekrounaE. Parkb and R. Temam, The Stampacchia maximum principle for stochastic partial differential equations and applications, J. Differential Equations, 260 (2016), 2926-2972. Google Scholar

[12]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ., Vol. 49, Amer. Math. Soc., Providence, RI, 2002. Google Scholar

[13]

I. Chueshov, Monotone Random Systems Theory and Applications, Lecture Notes in Mathematics, vol. 1779,2002. Google Scholar

[14]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341. Google Scholar

[15]

H. Crauel and F. Flandoli, Attractor for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. Google Scholar

[16]

H. CuiLanga and A. José, Uniform attractors for non-autonomous random dynamical systems, J. Differential Equations, 263 (2017), 1225-1268. Google Scholar

[17]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, 1992. Google Scholar

[18]

M. FilaP. Souplet and F. B. Weissler, Linear and nonlinear heat equations in $ L^q_{\delta }$ spaces and universal bounds for global solutions, Math. Ann., 320 (2001), 87-113. Google Scholar

[19]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45. Google Scholar

[20]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence. RI, 1988. Google Scholar

[21]

M. Loayza, The heat equation with singular nonlinearity and singular initial data, J. Differential Equations, 229 (2006), 509-528. Google Scholar

[22]

X. Li, Non-autonomous parabolic problems with singular initial data in weighted spaces, Rocky Mountain J. Math., 42 (2012), 1215-1245. Google Scholar

[23]

X. Li and L. Ren, Dynamics of non-autonomous parabolic problems with subcritical and critical nonlinearities, Bull. Sci. math., 138 (2014), 540-564. Google Scholar

[24]

X. Li and S. Ruan, Attractors for non-autonomous parabolic problems with singular initial data, J. Differential Equations, 251 (2011), 728-757. Google Scholar

[25]

B. K. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer-Verlay, New York, 1995, 4th ed. Google Scholar

[26]

P. Quittner and P. Souplet, A priori estimates and existence for elliptic systems via bootstrap in weighted Lebesgue spaces, Arch. Rational Mech. Anal., 174 (2004), 49-81. Google Scholar

[27]

G. R. Sell and Y. C. You, Dynamics of Evolutionary Equations, Springer-Verlay, New York, 2002. Google Scholar

[28]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. Google Scholar

[29]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. Google Scholar

[30]

X. WangK. Lu and B. Wang, Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing, SIAM J. Appl. Dyn. Syst., 14 (2015), 1018-1047. Google Scholar

[31]

Y. Wang and J. Wang, Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Differential Equations, 259 (2015), 728-776. Google Scholar

[32]

M. Yang and P. E. Kloeden, Random attractors for stochastic semi-linear degenerate parabolic equations., Nonlinear Anal. Real World Appl., 12 (2011), 2811-2821. Google Scholar

[33]

W. Zhao, $ {\rm{H}}^1$-random attractorsfor stochastic reaction diffusion equations with additive noise, Nonlinear Anal., 84 (2013), 61-72. Google Scholar

[34]

W. Zhao and Y. Li, Random attractors for stochastic semi-linear degenerate parabolic equations with additive noises, Dyn. Partial Differ. Equ., 11 (2014), 269-298. Google Scholar

[1]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[2]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[3]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[4]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[5]

Yuncheng You. Random attractor for stochastic reversible Schnackenberg equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1347-1362. doi: 10.3934/dcdss.2014.7.1347

[6]

Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106

[7]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[8]

Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221

[9]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[10]

Galina Kurina, Vladimir Zadorozhniy. Mean periodic solutions of a inhomogeneous heat equation with random coefficients. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-9. doi: 10.3934/dcdss.2020087

[11]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

[12]

Min Zhao, Shengfan Zhou. Random attractor for stochastic Boissonade system with time-dependent deterministic forces and white noises. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1683-1717. doi: 10.3934/dcdsb.2017081

[13]

Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure & Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761

[14]

Jesus Ildefonso Díaz, Jacqueline Fleckinger-Pellé. Positivity for large time of solutions of the heat equation: the parabolic antimaximum principle. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 193-200. doi: 10.3934/dcds.2004.10.193

[15]

Soohyun Bae. Weighted $L^\infty$ stability of positive steady states of a semilinear heat equation in $\R^n$. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 823-837. doi: 10.3934/dcds.2010.26.823

[16]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[17]

Henri Schurz. Stochastic heat equations with cubic nonlinearity and additive space-time noise in 2D. Conference Publications, 2013, 2013 (special) : 673-684. doi: 10.3934/proc.2013.2013.673

[18]

Min Niu, Bin Xie. Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2989-3009. doi: 10.3934/dcdsb.2018296

[19]

M. Sango. Weak solutions for a doubly degenerate quasilinear parabolic equation with random forcing. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 885-905. doi: 10.3934/dcdsb.2007.7.885

[20]

Yanfeng Guo, Jinqiao Duan, Donglong Li. Approximation of random invariant manifolds for a stochastic Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1701-1715. doi: 10.3934/dcdss.2016071

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (217)
  • HTML views (401)
  • Cited by (0)

Other articles
by authors

[Back to Top]