Advanced Search
Article Contents
Article Contents

The approximate solution for Benjamin-Bona-Mahony equation under slowly varying medium

  • * Corresponding author: Wenxia Chen

    * Corresponding author: Wenxia Chen 
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we investigate the soliton dynamics under slowly varying medium for the BBM equation, that is how the solution of this equation evolve when the time goes. We construct the approximate solution of this equation and prove that the error term due to the approximate solution can be controlled. By using the method of Lyapunov and Weinstein functions, we prove that the approximate solution is stable.

    Mathematics Subject Classification: Primary: 35Q53, 35B40.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] N. Asano, Wave propagation in non-uniform media, Progr. Theoret, Phys. Suppl., 55 (1974), 52-79. 
    [2] T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersion systems, Philo. Trans. Roy. Soc. London Ser. A, 272 (1972), 47-78. 
    [3] J. L. Bona, W. G. Pritchard and L. R. Scott, Solitary-wave interaction, Phys. Fluids, 23 (1980), 438-441.
    [4] J. L. BonaP. E. Souganidis and W. A. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London Ser. A, 411 (1987), 395-412. 
    [5] E. FermiJ. Pasta and S. Ulam, Studies of nonlinear problems Ⅰ, AMS, Editors: A. C. Newell, (1974), 143-156. 
    [6] R. Grimshaw, Slowly varying solitary waves. Ⅰ. Korteweg -de Vries equation, Proc. Roy. Soc. London Ser. A, 368 (1979), 359-375. 
    [7] R. Grimshaw, Slowly varying solitary waves. Ⅱ. Nonlinear Schrödinger equation, Proc. Roy. Soc. London Ser.A, 368 (1979), 377-388. 
    [8] R. H. J. Grimshaw and S. R. Pudjaprasetya, Generation of secondary solitary waves in the variable-coefficient Korteweg-de Vries equation, Stud. Appl. Math., 112 (2004), 271-279. 
    [9] V. I. Karpman and E. M. Maslov, Perturbation theory for solitons, Z. Eksper. Teoret. Fiz., 73 (1977), 281-291. 
    [10] D. J. Kaup and A. C. Newell, Soliton as particles, oscillators, and in slowly changing media a singular perturbation theory, Proc. R. Soc. Lond., 361 (1978), 413-446. 
    [11] K. Ko and H. H. Kuehl, Korteweg-de Vries soliton in a slowly varying medium, Phys. Rev. Lett., 40 (1978), 233-236. 
    [12] R. LeVeque, On the interaction of nearly equal solitons in the Kdv equation, SIAM. J. Appl. Math., 47 (1987), 254-262. 
    [13] Y. Martel, Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math., 127 (2005), 1103-1140. 
    [14] Y. Martel and F. Merle, Inelastic interaction of nearly equal solitons for the bbm equation, Discrete. Cont. Dyn., 27 (2010), 487-532. 
    [15] Y. Martel and F. Merle, Description of the Inelastic Collision of Two Solitary Waves for the BBM Equation, Arch. Ration. Mech. An, 196 (2010), 517-574. 
    [16] Y. Martel and F. Merle, Inelastic interaction of nearly equal solitonsfor the quartic gKdV equation, Invent. Math., 183 (2011), 563-648. 
    [17] Y. Martel and F. Merle, Description of two soliton collision for the quartic gKdV equation, Ann. Math., 174 (2011), 757-857. 
    [18] J. Miller and M. Weinstein, Asymptotic stability of solitary waves for the regularized long wave equation, Comm. Pure Appl. Math., 49 (1996), 399-441. 
    [19] T. Mizumachi, Asymptotic stability of solitary wave solutions to the regularized long wave equation, J. Differ. Equations, 200 (2004), 312-341. 
    [20] C. Muñoz, On the soliton dynamics under a slowly varying medium for generalized KdV equations, Anal. PDE., 4 (2011), 573-638. 
    [21] C. Muñoz, Dynamics of soliton-like solutions for slowly varying, generalized gKdV equations: refraction vs. Reflection, SIAM J. Math. Anal., 44 (2012), 1-60. 
    [22] C. Muñoz, Inelastic character of solitons of slowly varying gKdV equations, Commun. Math. Phys., 314 (2012), 817-852. 
    [23] C. Muñoz, On the soliton dynamics under slowly varying medium for Nonlinear Schrodinger equations, Math. Ann., 353 (2012), 867-943. 
    [24] C. Muñoz, Sharp inelastic character of slowly varying NLS solitons, preprint, arXiv: 1202.5807v2.
    [25] A. C. Newell, Solitons in mathematics and physics, Society for Industrial and Applied Mathematics, (1985). doi: 10.1137/1.9781611970227.
    [26] M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-68. 
    [27] M. I. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagations, Commun. Part. Diff. Eq., 12 (1987), 1133-1173. 
    [28] J. Wright, Soliton production and solutions to perturbed Korteweg-de Vries equations, Phys. Rev. A, 21 (1980), 335-339. 
    [29] N. J. Zabusky and M. D. Kruskal, Interaction of "solitons" in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett, 15 (1965), 240-243. 
  • 加载中

Article Metrics

HTML views(721) PDF downloads(228) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint