In this paper the fractional Q-curvature problem on three dimensional CR sphere is considered. By using the critical points theory at infinity, an existence result is obtained.
Citation: |
R. A. Adams,
Sobolev Spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975, Pure and Applied Mathematics, Vol. 65.
![]() |
|
A. Ambrosetti and A. Malchiodi,
Perturbation Methods and Semilinear Elliptic Problems on $R^n$ , vol. 240 of Progress in Mathematics, Birkhäuser Verlag, Basel, 2006.
![]() |
|
A. Bahri,
Critical Points at Infinity in Some Variational Problems, vol. 182 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.
![]() |
|
A. Bahri and H. Brezis, Non-linear elliptic equations on Riemannian manifolds with the Sobolev critical exponent, in Topics in Geometry, vol. 20 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 1996, 1-100
![]() |
|
A. Bahri
and J.-M. Coron
, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988)
, 253-294.
doi: 10.1002/cpa.3160410302.![]() ![]() |
|
A. Bahri
and J.-M. Coron
, The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal., 95 (1991)
, 106-172.
doi: 10.1016/0022-1236(91)90026-2.![]() ![]() |
|
A. Bahri
and P. H. Rabinowitz
, Periodic solutions of Hamiltonian systems of 3-body type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991)
, 561-649.
![]() |
|
A. Bahri
, An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J., 81 (1996)
, 323-466.
doi: 10.1215/S0012-7094-96-08116-8.![]() ![]() |
|
M. Ben Ayed
, Y. Chen
, H. Chtioui
and M. Hammami
, On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J., 84 (1996)
, 633-677.
doi: 10.1215/S0012-7094-96-08420-3.![]() ![]() |
|
G. Bianchi
and H. Egnell
, Local existence and uniqueness of positive solutions of the equation $Δ u+(1+ε\varphi(r))u^{(n+2)/(n-2)} = 0$ , in $\textbf{R}^n$ and a related equation, in Nonlinear Diffusion Equations and Their Equilibrium States, 3 (Gregynog, 1989), vol. 7 of Progr, Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, (1992)
, 111-128.
doi: 10.1007/978-1-4612-0393-3_8.![]() ![]() |
|
T. Bieske
, On ∞-harmonic functions on the Heisenberg group, Comm. Partial Differential Equations, 27 (2002)
, 727-761.
doi: 10.1081/PDE-120002872.![]() ![]() |
|
T. P. Branson
, L. Fontana
and C. Morpurgo
, Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere, Ann. of Math. (2), 177 (2013)
, 1-52.
doi: 10.4007/annals.2013.177.1.1.![]() ![]() |
|
H. Brezis
and J.-M. Coron
, Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal., 89 (1985)
, 21-56.
doi: 10.1007/BF00281744.![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007)
, 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() |
|
K. -c. Chang,
Infinite-dimensional Morse Theory and Multiple Solution Problems, Progress in Nonlinear Differential Equations and their Applications, 6, Birkhäuser Boston Inc., Boston, MA, 1993.
![]() |
|
S.-Y. A. Chang
and P. C. Yang
, Conformal deformation of metrics on $S^2$, J. Differential Geom., 27 (1988)
, 259-296.
![]() |
|
S.-Y. A. Chang
and P. C. Yang
, A perturbation result in prescribing scalar curvature on $S^n$, Duke Math. J., 64 (1991)
, 27-69.
doi: 10.1215/S0012-7094-91-06402-1.![]() ![]() |
|
S.-Y. A. Chang
and M. d. M. González
, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011)
, 1410-1432.
doi: 10.1016/j.aim.2010.07.016.![]() ![]() |
|
S.-Y. A. Chang
and P. C. Yang
, Prescribing Gaussian curvature on $S^2$, Acta Math., 159 (1987)
, 215-259.
doi: 10.1007/BF02392560.![]() ![]() |
|
G. Chen
and Y. Zheng
, Concentration phenomenon for fractional nonlinear schrödinger equations, Communications on Pure and Applied Analysis, 13 (2014)
, 2359-2376.
![]() |
|
G. Chen
and Y. Zheng
, A perturbation result for the curvature problem on $S^n$, Nonlinear Analysis, 97 (2014)
, 4-14.
![]() |
|
W. X. Chen
, Scalar curvatures on $S^n$, Math. Ann., 283 (1989)
, 353-365.
doi: 10.1007/BF01442733.![]() ![]() |
|
W. X. Chen
and W. Y. Ding
, Scalar curvatures on $S^2$, Trans. Amer. Math. Soc., 303 (1987)
, 365-382.
doi: 10.2307/2000798.![]() ![]() |
|
H. Chtioui
, K. El Mehdi
and N. Gamara
, The Webster scalar curvature problem on the three dimensional CR manifolds, Bull. Sci. Math., 131 (2007)
, 361-374.
doi: 10.1016/j.bulsci.2006.05.003.![]() ![]() |
|
S. Dragomir and G. Tomassini, Differential Geometry and Analysis on CR Manifolds, vol. 246 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 2006.
![]() |
|
J. F. Escobar
and R. M. Schoen
, Conformal metrics with prescribed scalar curvature, Invent. Math., 86 (1986)
, 243-254.
doi: 10.1007/BF01389071.![]() ![]() |
|
G. B. Folland
and E. M. Stein
, Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974)
, 429-522.
![]() |
|
R. L. Frank
, M. d. M. González
, D. D. Monticelli
and J. Tan
, An extension problem for the CR fractional Laplacian, Advances in Mathematics, 270 (2015)
, 97-137.
![]() |
|
R. L. Frank
and E. H. Lieb
, Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differential Equations, 39 (2010)
, 85-99.
doi: 10.1007/s00526-009-0302-x.![]() ![]() |
|
R. L. Frank
and E. H. Lieb
, Sharp constants in several inequalities on the Heisenberg group, Ann. of Math. (2), 176 (2012)
, 349-381.
doi: 10.4007/annals.2012.176.1.6.![]() ![]() |
|
N. Gamara
, The CR Yamabe conjecture-the case $n = 1$, J. Eur. Math. Soc. (JEMS), 3 (2001)
, 105-137.
doi: 10.1007/PL00011303.![]() ![]() |
|
N. Gamara
, The prescribed scalar curvature on a 3-dimensional CR manifold, Adv. Nonlinear Stud., 2 (2002)
, 193-235.
![]() |
|
N. Gamara
and R. Yacoub
, CR Yamabe conjecture-the conformally flat case, Pacific J. Math., 201 (2001)
, 121-175.
doi: 10.2140/pjm.2001.201.121.![]() ![]() |
|
Z.-C. Han
, Prescribing Gaussian curvature on $S^2$, Duke Math. J., 61 (1990)
, 679-703.
doi: 10.1215/S0012-7094-90-06125-3.![]() ![]() |
|
E. Hebey
, Changements de métriques conformes sur la sphére. Le probléme de Nirenberg, Bull. Sci. Math., 114 (1990)
, 215-242.
![]() |
|
D. Jerison
and J. M. Lee
, The Yamabe problem on CR manifolds, J. Differential Geom., 25 (1987)
, 167-197.
![]() |
|
D. Jerison
and J. M. Lee
, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc., 1 (1988)
, 1-13.
doi: 10.2307/1990964.![]() ![]() |
|
D. Jerison
and J. M. Lee
, Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom., 29 (1989)
, 303-343.
![]() |
|
J. M. Lee
and T. H. Parker
, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.), 17 (1987)
, 37-91.
doi: 10.1090/S0273-0979-1987-15514-5.![]() ![]() |
|
Y. Y. Li
, Prescribing scalar curvature on $S^n$ and related problems. I, J. Differential Equations, 120 (1995)
, 319-410.
doi: 10.1006/jdeq.1995.1115.![]() ![]() |
|
E. H. Lieb
, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983)
, 349-374.
doi: 10.2307/2007032.![]() ![]() |
|
E. H. Lieb and M. Loss,
Analysis, vol. 14 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2001.
![]() |
|
A. Malchiodi
and F. Uguzzoni
, A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pures Appl. (9), 81 (2002)
, 983-997.
doi: 10.1016/S0021-7824(01)01249-1.![]() ![]() |
|
J. J. Manfredi
and B. Stroffolini
, A version of the Hopf-Lax formula in the Heisenberg group, Comm. Partial Differential Equations, 27 (2002)
, 1139-1159.
doi: 10.1081/PDE-120004897.![]() ![]() |
|
J. Moser, On a nonlinear problem in differential geometry, 273-280.
![]() |
|
E. Salem
and N. Gamara
, The Webster scalar curvature revisited: the case of the three dimensional CR sphere, Calc. Var. Partial Differential Equations, 42 (2011)
, 107-136.
doi: 10.1007/s00526-010-0382-7.![]() ![]() |