May  2018, 17(3): 1071-1101. doi: 10.3934/cpaa.2018052

Scattering for the two dimensional NLS with (full) exponential nonlinearity

UCLA Department of Mathematics, 520 Portola Plaza, Math Sciences Building 6363, Los Angeles, CA 90095-1555, USA

* Corresponding author

Received  October 2016 Revised  August 2017 Published  January 2018

Fund Project: The first author is supported by NSF grant DMS 1265868 and DMS-1500707.

We obtain global well-posedness, scattering, and global
$L_t^4H_{x}^{1,4}$
spacetime bounds for energy-space solutions to the energy-subcritical nonlinear Schrödinger equation
$iu_t+Δ u = u(e^{4π |u|^2}-1)$
in two spatial dimensions. Our approach is perturbative; we view our problem as a perturbation of the mass-critical NLS to employ the techniques of Tao-Visan-Zhang from [25]. This permits us to combine the known spacetime estimates for mass-critical NLS proved by Dodson [12] and the work of [15] and [14] to prove corresponding spacetime estimates which imply scattering.
Citation: A. Adam Azzam. Scattering for the two dimensional NLS with (full) exponential nonlinearity. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1071-1101. doi: 10.3934/cpaa.2018052
References:
[1]

S. Adachi and K. Tanaka, Trudinger type inequalities in ${{\bf{R}}^{N}}$ and their best exponents, Proc. Amer. Math. Soc., 128 (2000), 2051-2057. 

[2]

H. BahouriS. Ibrahim and G. Perelman, Scattering for the critical 2-D NLS with exponential growth, Differential Integral Equations, 27 (2014), 233-268. 

[3]

A. Biryuk, An optimal limiting 2D Sobolev inequality, Proc. Amer. Math. Soc., 138 (2010), 1461-1470. 

[4]

J. Bourgain, Scattering in the energy space and below for 3D NLS, J. Anal. Math., 75 (1998), 267-297. 

[5]

J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999), 145-171. 

[6]

T. Cazenave, Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

[7]

T. Cazenave and F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the subcritical case, in New Methods and Results in Nonlinear Field Equations (Bielefeld, 1987), vol. 347 of Lecture Notes in Phys., Springer, Berlin, 1989, 59-69.

[8]

T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836. 

[9]

J. CollianderM. Grillakis and N. Tzirakis, Tensor products and correlation estimates with applications to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 62 (2009), 920-968. 

[10]

J. CollianderS. IbrahimM. Majdoub and N. Masmoudi, Energy critical NLS in two space dimensions, J. Hyperbolic Differ. Equ., 6 (2009), 549-575. 

[11]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\Bbb R^3$, Ann. of Math. (2), 167 (2008), 767-865. 

[12]

B. Dodson, Global well-posedness and scattering for the defocusing, $l^{2}$-critical, nonlinear schrödinger equation when $d = 2$, Duke Math. J., 165 (2016), 3435-3516. 

[13]

S. IbrahimM. Majdoub and N. Masmoudi, Double logarithmic inequality with a sharp constant, Proc. Amer. Math. Soc., 135 (2007), 87-97 (electronic). 

[14]

S. IbrahimM. MajdoubN. Masmoudi and K. Nakanishi, Scattering for the two-dimensional energy-critical wave equation, Duke Math. J., 150 (2009), 287-329. 

[15]

S. IbrahimM. MajdoubN. Masmoudi and K. Nakanishi, Scattering for the two-dimensional NLS with exponential nonlinearity, Nonlinearity, 25 (2012), 1843-1849. 

[16]

S. IbrahimN. Masmoudi and K. Nakanishi, Trudinger -moser inequality on the whole plane with the exact growth condition, Journal of the European Mathematical Society, (), 819-835. 

[17]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980. 

[18]

R. KillipT. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258. 

[19]

R. Killip and M. Visan, Evolution Equations, vol. 17 of Clay Mathematics Proceedings, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2013, Lecture notes from the Clay Mathematics Institute Summer School held at the Eidgenössische Technische Hochschule (ETH), Zürich, June 23-July 18,2008.

[20]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092. 

[21]

K. Nakanishi, Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2, J. Funct. Anal., 169 (1999), 201-225. 

[22]

F. Planchon and L. Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 261-290. 

[23]

B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\Bbb R^2$, J. Funct. Anal., 219 (2005), 340-367. 

[24]

E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\Bbb R^{1+4}$, Amer. J. Math., 129 (2007), 1-60. 

[25]

T. TaoM. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343. 

[26]

N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483. 

[27]

M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374. 

show all references

References:
[1]

S. Adachi and K. Tanaka, Trudinger type inequalities in ${{\bf{R}}^{N}}$ and their best exponents, Proc. Amer. Math. Soc., 128 (2000), 2051-2057. 

[2]

H. BahouriS. Ibrahim and G. Perelman, Scattering for the critical 2-D NLS with exponential growth, Differential Integral Equations, 27 (2014), 233-268. 

[3]

A. Biryuk, An optimal limiting 2D Sobolev inequality, Proc. Amer. Math. Soc., 138 (2010), 1461-1470. 

[4]

J. Bourgain, Scattering in the energy space and below for 3D NLS, J. Anal. Math., 75 (1998), 267-297. 

[5]

J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999), 145-171. 

[6]

T. Cazenave, Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

[7]

T. Cazenave and F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the subcritical case, in New Methods and Results in Nonlinear Field Equations (Bielefeld, 1987), vol. 347 of Lecture Notes in Phys., Springer, Berlin, 1989, 59-69.

[8]

T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836. 

[9]

J. CollianderM. Grillakis and N. Tzirakis, Tensor products and correlation estimates with applications to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 62 (2009), 920-968. 

[10]

J. CollianderS. IbrahimM. Majdoub and N. Masmoudi, Energy critical NLS in two space dimensions, J. Hyperbolic Differ. Equ., 6 (2009), 549-575. 

[11]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\Bbb R^3$, Ann. of Math. (2), 167 (2008), 767-865. 

[12]

B. Dodson, Global well-posedness and scattering for the defocusing, $l^{2}$-critical, nonlinear schrödinger equation when $d = 2$, Duke Math. J., 165 (2016), 3435-3516. 

[13]

S. IbrahimM. Majdoub and N. Masmoudi, Double logarithmic inequality with a sharp constant, Proc. Amer. Math. Soc., 135 (2007), 87-97 (electronic). 

[14]

S. IbrahimM. MajdoubN. Masmoudi and K. Nakanishi, Scattering for the two-dimensional energy-critical wave equation, Duke Math. J., 150 (2009), 287-329. 

[15]

S. IbrahimM. MajdoubN. Masmoudi and K. Nakanishi, Scattering for the two-dimensional NLS with exponential nonlinearity, Nonlinearity, 25 (2012), 1843-1849. 

[16]

S. IbrahimN. Masmoudi and K. Nakanishi, Trudinger -moser inequality on the whole plane with the exact growth condition, Journal of the European Mathematical Society, (), 819-835. 

[17]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980. 

[18]

R. KillipT. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258. 

[19]

R. Killip and M. Visan, Evolution Equations, vol. 17 of Clay Mathematics Proceedings, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2013, Lecture notes from the Clay Mathematics Institute Summer School held at the Eidgenössische Technische Hochschule (ETH), Zürich, June 23-July 18,2008.

[20]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092. 

[21]

K. Nakanishi, Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2, J. Funct. Anal., 169 (1999), 201-225. 

[22]

F. Planchon and L. Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 261-290. 

[23]

B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\Bbb R^2$, J. Funct. Anal., 219 (2005), 340-367. 

[24]

E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\Bbb R^{1+4}$, Amer. J. Math., 129 (2007), 1-60. 

[25]

T. TaoM. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343. 

[26]

N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483. 

[27]

M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374. 

[1]

Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110

[2]

Prosenjit Roy. On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5207-5222. doi: 10.3934/dcds.2019212

[3]

Kyril Tintarev. Is the Trudinger-Moser nonlinearity a true critical nonlinearity?. Conference Publications, 2011, 2011 (Special) : 1378-1384. doi: 10.3934/proc.2011.2011.1378

[4]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[5]

Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026

[6]

Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275

[7]

Abdelwahab Bensouilah, Van Duong Dinh, Mohamed Majdoub. Scattering in the weighted $ L^2 $-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2735-2755. doi: 10.3934/cpaa.2019122

[8]

Changliang Zhou, Chunqin Zhou. On the anisotropic Moser-Trudinger inequality for unbounded domains in $ \mathbb R^{n} $. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 847-881. doi: 10.3934/dcds.2020064

[9]

Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

[10]

Gyu Eun Lee. Local wellposedness for the critical nonlinear Schrödinger equation on $ \mathbb{T}^3 $. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2763-2783. doi: 10.3934/dcds.2019116

[11]

Thomas Duyckaerts, Carlos E. Kenig, Frank Merle. Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1275-1326. doi: 10.3934/cpaa.2015.14.1275

[12]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[13]

Van Duong Dinh. A unified approach for energy scattering for focusing nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6441-6471. doi: 10.3934/dcds.2020286

[14]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[15]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[16]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure and Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[17]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[18]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[19]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031

[20]

Joachim Krieger, Kenji Nakanishi, Wilhelm Schlag. Global dynamics of the nonradial energy-critical wave equation above the ground state energy. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2423-2450. doi: 10.3934/dcds.2013.33.2423

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (179)
  • HTML views (308)
  • Cited by (0)

Other articles
by authors

[Back to Top]