\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Scattering for the two dimensional NLS with (full) exponential nonlinearity

  • * Corresponding author

    * Corresponding author
The first author is supported by NSF grant DMS 1265868 and DMS-1500707
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We obtain global well-posedness, scattering, and global $L_t^4H_{x}^{1,4}$ spacetime bounds for energy-space solutions to the energy-subcritical nonlinear Schrödinger equation

    $iu_t+Δ u = u(e^{4π |u|^2}-1)$

    in two spatial dimensions. Our approach is perturbative; we view our problem as a perturbation of the mass-critical NLS to employ the techniques of Tao-Visan-Zhang from [25]. This permits us to combine the known spacetime estimates for mass-critical NLS proved by Dodson [12] and the work of [15] and [14] to prove corresponding spacetime estimates which imply scattering.

    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35P25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   S. Adachi  and  K. Tanaka , Trudinger type inequalities in ${{\bf{R}}^{N}}$ and their best exponents, Proc. Amer. Math. Soc., 128 (2000) , 2051-2057. 
      H. Bahouri , S. Ibrahim  and  G. Perelman , Scattering for the critical 2-D NLS with exponential growth, Differential Integral Equations, 27 (2014) , 233-268. 
      A. Biryuk , An optimal limiting 2D Sobolev inequality, Proc. Amer. Math. Soc., 138 (2010) , 1461-1470. 
      J. Bourgain , Scattering in the energy space and below for 3D NLS, J. Anal. Math., 75 (1998) , 267-297. 
      J. Bourgain , Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999) , 145-171. 
      T. Cazenave, Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
      T. Cazenave and F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the subcritical case, in New Methods and Results in Nonlinear Field Equations (Bielefeld, 1987), vol. 347 of Lecture Notes in Phys., Springer, Berlin, 1989, 59-69.
      T. Cazenave  and  F. B. Weissler , The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990) , 807-836. 
      J. Colliander , M. Grillakis  and  N. Tzirakis , Tensor products and correlation estimates with applications to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 62 (2009) , 920-968. 
      J. Colliander , S. Ibrahim , M. Majdoub  and  N. Masmoudi , Energy critical NLS in two space dimensions, J. Hyperbolic Differ. Equ., 6 (2009) , 549-575. 
      J. Colliander , M. Keel , G. Staffilani , H. Takaoka  and  T. Tao , Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\Bbb R^3$, Ann. of Math. (2), 167 (2008) , 767-865. 
      B. Dodson , Global well-posedness and scattering for the defocusing, $l^{2}$-critical, nonlinear schrödinger equation when $d = 2$, Duke Math. J., 165 (2016) , 3435-3516. 
      S. Ibrahim , M. Majdoub  and  N. Masmoudi , Double logarithmic inequality with a sharp constant, Proc. Amer. Math. Soc., 135 (2007) , 87-97 (electronic). 
      S. Ibrahim , M. Majdoub , N. Masmoudi  and  K. Nakanishi , Scattering for the two-dimensional energy-critical wave equation, Duke Math. J., 150 (2009) , 287-329. 
      S. Ibrahim , M. Majdoub , N. Masmoudi  and  K. Nakanishi , Scattering for the two-dimensional NLS with exponential nonlinearity, Nonlinearity, 25 (2012) , 1843-1849. 
      S. Ibrahim , N. Masmoudi  and  K. Nakanishi , Trudinger -moser inequality on the whole plane with the exact growth condition, Journal of the European Mathematical Society, () , 819-835. 
      M. Keel  and  T. Tao , Endpoint Strichartz estimates, Amer. J. Math., 120 (1998) , 955-980. 
      R. Killip , T. Tao  and  M. Visan , The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009) , 1203-1258. 
      R. Killip and M. Visan, Evolution Equations, vol. 17 of Clay Mathematics Proceedings, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2013, Lecture notes from the Clay Mathematics Institute Summer School held at the Eidgenössische Technische Hochschule (ETH), Zürich, June 23-July 18,2008.
      J. Moser , A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71) , 1077-1092. 
      K. Nakanishi , Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2, J. Funct. Anal., 169 (1999) , 201-225. 
      F. Planchon  and  L. Vega , Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009) , 261-290. 
      B. Ruf , A sharp Trudinger-Moser type inequality for unbounded domains in $\Bbb R^2$, J. Funct. Anal., 219 (2005) , 340-367. 
      E. Ryckman  and  M. Visan , Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\Bbb R^{1+4}$, Amer. J. Math., 129 (2007) , 1-60. 
      T. Tao , M. Visan  and  X. Zhang , The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007) , 1281-1343. 
      N. Trudinger , On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967) , 473-483. 
      M. Visan , The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007) , 281-374. 
  • 加载中
SHARE

Article Metrics

HTML views(1946) PDF downloads(200) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return