The aim of this paper is to study the following problem
$(P_{\lambda}) \equiv\left\{\begin{array}{rcll}(-\Delta)^s u& = &\lambda u^{q}+u^{p}&{\text{ in }}\Omega,\\ u&>&0 &{\text{ in }} \Omega, \\ \mathcal{B}_{s}u& = &0 &{\text{ in }} \mathbb{R}^{N}\backslash \Omega,\end{array}\right.$
with
$(-Δ)^su(x) = a_{N,s}\;P.V.∈t_{\mathbb{R}^{N}}\frac{u(x)-u(y)}{|x-y|^{N+2s}}\,dy,$
In this setting,
Citation: |
S. Alama , Semilinear elliptic equation with sublinear indefinite nonlinearities, Adv. Differential Equation, 4 (1999) , 813-842. | |
A. Ambrosetti , Critical points and nonlinear variational problems, Mem. Soc. Math. France (N.S.), 49 (1992) , 1-139. | |
A. Ambrosetti , H. Brezis and G. Cerami , Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994) , 519-543. | |
A. Ambrosetti and P.H. Rabinowitz , Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973) , 349-381. | |
D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd, edition, Cambridge Studies in Advanced Mathematics, vol. 116, Cambridge University Press, 2009. | |
J. G. Azorero and I. Peral , Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term, Trans. Am. Math. Soc, 323 (1991) , 877-895. | |
B. Barrios , E. Colorado , R. Servadei and F. Soria , A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015) , 875-900. | |
B. Barrios and M. Medina, Strong maximum principles for fractional elliptic and parabolic problems with mixed boundary conditions, arXiv: 1607.01505. | |
B. Barrios, M. Medina and I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential, Commun. Contemp. Math, 16 (2014), 1350046, 29 pp. | |
H. Brezis and S. Kamin , Sublinear elliptic equations in $\mathbb{R}^{N}$, Manuscripta Math., 74 (1992) , 87-106. | |
C. Bucur and M. Medina, A fractional elliptic problem in $\mathbb{R}^{N}$ with critical growth and convex nonlinearities, arXiv: 1609.01911. | |
C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20. Springer; Unione Matematica Italiana, Bologna, 2016. | |
L. Caffarelli and L. Silvestre , An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007) , 1245-1260. | |
L. Caffarelli and L. Silvestre , Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011) , 59-88. | |
E. Colorado and I. Peral , Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions, J. Funct. Anal, 199 (2003) , 468-507. | |
M. Cozzi, Qualitative Properties of Solutions of Nonlinear Anisotropic PDEs in Local and Nonlocal Settings, PhD thesis, 2015. | |
E. Di Nezza , G. Palatucci and E. Valdinoci , Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012) , 521-573. | |
S. Dipierro , M. Medina , I. Peral and E. Valdinoci , Bifurcation results for a fractional elliptic equation with critica exponent in $\mathbb{R}^N$, Manuscripta Math., 153 (2017) , no.1-230. | |
S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $\mathbb{R}^{N}$, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa, 2017. | |
S. Dipierro , X. Ros-Oton and E. Valdinoci , Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam, 33 (2017) , 377-416. | |
N. Ghoussoub and D. Preiss , A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 6 (1989) , 321-330. | |
M. Grossi and F. Pacella , Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A., 116 (1990) , 23-43. | |
N. S. Landkof, Foundations of Modern Potential Theory, Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag. | |
T. Leonori , I. Peral , A. Primo and F. Soria , Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015) , 6031-6068. | |
A. C. Ponce, Elliptic PDEs, Measures and Capacities, Tracts in Mathematics 23, European Mathematical Society (EMS), Zurich, 2016. | |
X. Ros-Oton , Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016) , 3-26. | |
X. Ros-Oton and J. Serra , The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014) , 275-302. | |
R. Servadei and E. Valdinoci , Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl, 389 (2012) , 887-898. | |
R. Servadei and E. Valdinoci , Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013) , 2105-2137. | |
R. Servadei and E. Valdinoci , Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014) , 133-154. | |
G. Stampacchia , Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965) , 189-258. | |
M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergeb. Math. Grenzgeb. (3), Springer-Verlag, Berlin Heidelberg, 1990. |