The aim of this paper is to study the following problem
$(P_{\lambda}) \equiv\left\{\begin{array}{rcll}(-\Delta)^s u& = &\lambda u^{q}+u^{p}&{\text{ in }}\Omega,\\ u&>&0 &{\text{ in }} \Omega, \\ \mathcal{B}_{s}u& = &0 &{\text{ in }} \mathbb{R}^{N}\backslash \Omega,\end{array}\right.$
with
$(-Δ)^su(x) = a_{N,s}\;P.V.∈t_{\mathbb{R}^{N}}\frac{u(x)-u(y)}{|x-y|^{N+2s}}\,dy,$
In this setting,
Citation: |
S. Alama
, Semilinear elliptic equation with sublinear indefinite nonlinearities, Adv. Differential Equation, 4 (1999)
, 813-842.
![]() ![]() |
|
A. Ambrosetti
, Critical points and nonlinear variational problems, Mem. Soc. Math. France (N.S.), 49 (1992)
, 1-139.
![]() ![]() |
|
A. Ambrosetti
, H. Brezis
and G. Cerami
, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994)
, 519-543.
![]() ![]() |
|
A. Ambrosetti
and P.H. Rabinowitz
, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973)
, 349-381.
![]() ![]() |
|
D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd, edition, Cambridge Studies in Advanced Mathematics, vol. 116, Cambridge University Press, 2009.
![]() ![]() |
|
J. G. Azorero
and I. Peral
, Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term, Trans. Am. Math. Soc, 323 (1991)
, 877-895.
![]() ![]() |
|
B. Barrios
, E. Colorado
, R. Servadei
and F. Soria
, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015)
, 875-900.
![]() ![]() |
|
B. Barrios and M. Medina, Strong maximum principles for fractional elliptic and parabolic problems with mixed boundary conditions, arXiv: 1607.01505.
![]() |
|
B. Barrios, M. Medina and I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential, Commun. Contemp. Math, 16 (2014), 1350046, 29 pp.
![]() ![]() |
|
H. Brezis
and S. Kamin
, Sublinear elliptic equations in $\mathbb{R}^{N}$, Manuscripta Math., 74 (1992)
, 87-106.
![]() ![]() |
|
C. Bucur and M. Medina, A fractional elliptic problem in $\mathbb{R}^{N}$ with critical growth and convex nonlinearities, arXiv: 1609.01911.
![]() |
|
C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20. Springer; Unione Matematica Italiana, Bologna, 2016.
![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007)
, 1245-1260.
![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011)
, 59-88.
![]() ![]() |
|
E. Colorado
and I. Peral
, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions, J. Funct. Anal, 199 (2003)
, 468-507.
![]() ![]() |
|
M. Cozzi, Qualitative Properties of Solutions of Nonlinear Anisotropic PDEs in Local and Nonlocal Settings, PhD thesis, 2015.
![]() |
|
E. Di Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012)
, 521-573.
![]() ![]() |
|
S. Dipierro
, M. Medina
, I. Peral
and E. Valdinoci
, Bifurcation results for a fractional elliptic equation with critica exponent in $\mathbb{R}^N$, Manuscripta Math., 153 (2017)
, no.1-230.
![]() ![]() |
|
S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $\mathbb{R}^{N}$, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa, 2017.
![]() ![]() |
|
S. Dipierro
, X. Ros-Oton
and E. Valdinoci
, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam, 33 (2017)
, 377-416.
![]() ![]() |
|
N. Ghoussoub
and D. Preiss
, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 6 (1989)
, 321-330.
![]() ![]() |
|
M. Grossi
and F. Pacella
, Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A., 116 (1990)
, 23-43.
![]() ![]() |
|
N. S. Landkof, Foundations of Modern Potential Theory, Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag.
![]() ![]() |
|
T. Leonori
, I. Peral
, A. Primo
and F. Soria
, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015)
, 6031-6068.
![]() ![]() |
|
A. C. Ponce, Elliptic PDEs, Measures and Capacities, Tracts in Mathematics 23, European Mathematical Society (EMS), Zurich, 2016.
![]() ![]() |
|
X. Ros-Oton
, Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016)
, 3-26.
![]() ![]() |
|
X. Ros-Oton
and J. Serra
, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014)
, 275-302.
![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl, 389 (2012)
, 887-898.
![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013)
, 2105-2137.
![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014)
, 133-154.
![]() ![]() |
|
G. Stampacchia
, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965)
, 189-258.
![]() ![]() |
|
M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergeb. Math. Grenzgeb. (3), Springer-Verlag, Berlin Heidelberg, 1990.
![]() ![]() |