In this paper, we are concerned with the existence of ground state solutions for the following quasilinear Schrödinger equation:
$-Δ u+V(x)u-Δ (u^2)u = K(x)|u|^{22^*-2}u+g(x,u), \ \ x∈ \mathbb{R}^N\ \ \ \ \ \ \ \ \ \ \left( 1 \right)$
where $N≥ 3$, $V, \ g$ are asymptotically periodic functions in $x$. By combining variational methods and the concentration-compactness principle, we obtain a ground state solution for equation (1) under a new reformative condition which unify the asymptotic processes of $V, g $ at infinity.
Citation: |
S. Adachi
and T. Watanabe
, Uniqueness of the ground state solutions of quasilinear Schrödinger equations, Nonlinear Anal., 75 (2012)
, 819-833.
![]() ![]() |
|
H. Brezis
and L. Nirenberg
, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983)
, 437-477.
![]() ![]() |
|
M. Colin
and L. Jeanjean
, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal., 56 (2004)
, 213-226.
![]() ![]() |
|
M. Colin
, L. Jeanjean
and M. Squassina
, Stability and instability results for standing waves of quasi-linear Schrödinger equations, Nonlinearity, 23 (2010)
, 1353-1385.
![]() ![]() |
|
Y. B. Deng
, S. J. Peng
and J. Wang
, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent, Journal of Mathematical Physics, 54 (2013)
, 011504.
![]() ![]() |
|
Y. B. Deng
, S. J. Peng
and S. S. Yan
, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, Journal of Differential Equations, 260 (2016)
, 1228-1262.
![]() ![]() |
|
J. M. do Ó
and U. Severo
, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Commun. Pure Appl. Anal., 8 (2009)
, 621-644.
![]() ![]() |
|
J.M. do Ó
, O. H. Miyagaki
and S. H. M. Soares
, Soliton solutions for quasilinear Schrödinger equations with critical growth, Journal of Differential Equations, 248 (2010)
, 722-744.
![]() ![]() |
|
X. D. Fang
and A. Szulkin
, Multiple solutions for a quasilinear Schrödinger equation, J. Differential Equations, 254 (2013)
, 2015-2032.
![]() ![]() |
|
F. Gladiali
and M. Squassina
, Uniqueness of ground states for a class of quasi-linear elliptic equations, Adv. Nonlinear Anal., 1 (2012)
, 159-179.
![]() ![]() |
|
Y. He
and G. B. Li
, Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Soblev exponents, Disctete and Continuous Dynamical Systems, 36 (2016)
, 731-762.
![]() ![]() |
|
L. Jeanjean
, T. J. Luo
and Z. Q. Wang
, Multiple normalized solutions for quasi-linear Schrödinger equations, J. Differential Equations, 259 (2015)
, 3894-3928.
![]() ![]() |
|
G. B. Li
and A. Szulkin
, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002)
, 763-776.
![]() ![]() |
|
H. F. Lins
and E. A. B. Silva
, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 71 (2009)
, 2890-2905.
![]() ![]() |
|
P. L. Lions
, The concentration-compactness principle in the calculus of variations, The locally compact case. Ⅱ, Ann. Inst. H. Poincare Anal. Non Lineaire, 1 (1984)
, 223-283.
![]() ![]() |
|
P. L. Lions
, The concentration-compactness principle in the calculus of variations, The locally compact case. Ⅰ, Ann. Inst. H. Poincare Anal. Non Lineaire, 1 (1984)
, 109-145.
![]() ![]() |
|
J. Liu
, J. F. Liao
and C. L. Tang
, A positive ground state solution for a class of asymptotically periodic Schrödinger equations, Comput. Math. Appl., 71 (2016)
, 965-976.
![]() ![]() |
|
J. Liu
, J. F. Liao
and C. L. Tang
, A positive ground state solution for a class of asymptotically periodic Schrödinger equations with critical exponent, Comput. Math. Appl., 72 (2016)
, 1851-1864.
![]() ![]() |
|
J. Q. Liu
, X. Q. Liu
and Z. Q. Wang
, Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method, Comm. Partial Differential Equations, 39 (2014)
, 2216-2239.
![]() ![]() |
|
J. Q. Liu
, Y. Q. Wang
and Z. Q. Wang
, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004)
, 879-901.
![]() ![]() |
|
J. Q. Liu
, Y. Q. Wang
and Z. Q. Wang
, Soliton solutions for quasilinear Schrödinger equations Ⅱ, J. Differential Equations, 187 (2003)
, 473-493.
![]() ![]() |
|
J. Q. Liu
and Z. Q. Wang
, Soliton solutions for quasilinear Schrödinger equations, Ⅰ, Proc. Amer. Math. Soc., 131 (2003)
, 441-448.
![]() ![]() |
|
X. Q. Liu
, J. Q. Liu
and Z. Q. Wang
, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013)
, 253-263.
![]() ![]() |
|
X. Q. Liu
, J. Q. Liu
and Z. Q. Wang
, Quasilinear elliptic equations with critical growth via perturbation method, Journal of Differential Equations, 254 (2013)
, 102-124.
![]() ![]() |
|
X. Q. Liu
, J. Q. Liu
and Z. Q. Wang
, Ground states for quasilinear Schrödinger equations with critical growth, Calculus of Variations and Partial Differential Equations, 46 (2013)
, 641-669.
![]() ![]() |
|
R. D. Marchi
, Schrödinger equations with asymptotically periodic terms, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 145 (2015)
, 745-757.
![]() ![]() |
|
A. Moameni
, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\mathbb{R}^N$, Journal of Differential Equations, 229 (2006)
, 570-587.
![]() ![]() |
|
M. Poppenberg
, K. Schmitt
and Z. Q. Wang
, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002)
, 329-344.
![]() ![]() |
|
D. Ruiz
and G. Siciliano
, Existence of ground states for a modified nonlinear Schrödinger equation, Nonlinearity, 23 (2010)
, 1221-1233.
![]() ![]() |
|
A. Selvitella
, Uniqueness and nondegeneracy of the ground state for a quasilinear Schrödinger equation with a small parameter, Nonlinear Anal., 74 (2011)
, 1731-1737.
![]() ![]() |
|
H. X. Shi
and H. B. Chen
, Generalized quasilinear asymptotically periodic Schrödinger equations with critical growth, Comput. Math. Appl., 71 (2016)
, 849-858.
![]() ![]() |
|
E. A. B. Silva
and G. F. Vieira
, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal., 72 (2010)
, 2935-2949.
![]() ![]() |
|
E. A. B. Silva
and G. F. Vieira
, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010)
, 1-33.
![]() ![]() |
|
X. H. Tang
, Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci. China Math., 58 (2015)
, 715-728.
![]() ![]() |
|
M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
![]() ![]() |
|
X. Wu
, Multiple solutions for quasilinear Schrödinger equations with a parameter, J. Differential Equations, 256 (2014)
, 2619-2632.
![]() ![]() |
|
H. Zhang
, J. X. Xu
and F. B. Zhang
, On a class of semilinear Schrödinger equations with indefinite linear part, J. Math. Anal. Appl., 414 (2014)
, 710-724.
![]() ![]() |
|
H. Zhang
, J. X. Xu
and F. B. Zhang
, Ground state solutions for asymptotically periodic Schrödinger equations with indefinite linear part, Math. Methods Appl. Sci., 38 (2015)
, 113-122.
![]() ![]() |