\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Sign-changing solutions for non-local elliptic equations with asymptotically linear term

  • * Corresponding author: XHT

    * Corresponding author: XHT 

XHT is supported by NNSF grant No.11571370

Abstract Full Text(HTML) Related Papers Cited by
  • In this article, we study the existence of sign-changing solutions for a problem driven by a non-local integrodifferential operator with homogeneous Dirichlet boundary condition

    $\left\{ \begin{array}{ll}-\mathcal{L}_Ku = f(x,u) &\text{in}~Ω, \\u = 0 &\text{in}~\mathbb{R}^n\setminusΩ, \end{array} \right.\ \ \ \ \ \ \ \ \ \left( 1 \right)$

    where $Ω\subset\mathbb{R}^n(n≥2)$ is a bounded, smooth domain and $f(x, u)$ is asymptotically linear at infinity with respect to $u$. By introducing some new ideas and combining constraint variational method with the quantitative deformation lemma, we prove that there exists a sign-changing solution of problem (1).

    Mathematics Subject Classification: Primary: 35R11; Secondary: 58E30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   C. O. Alves  and  M. A. S. Souto , Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014) , 1153-1166. 
      V. Ambrosio and T. Isernia, Sign-changing solutions for a class of fractional Schrödinger equations with vanishing potentials, preprint, arXiv: 1609.09003.
      S. Barile  and  G. M. Figueiredo , Existence of least energy positive, negative and nodal solutions for a class of $p q-$problems with potentials vanishing at infinity, J. Math. Anal. Appl., 427 (2015) , 1205-1233. 
      B. Barrios , E. Colorado , A. de Pablo  and  U. Sánchez , On some critical problems for the fractional Laplace operator, J. Diff. Eqns., 252 (2012) , 6133-6162. 
      T. Bartsch , Z. Liu  and  T. Weth , Sign changing solutions of superlinear Schrödinger equations, Commmun. Part. Diff. Eq., 29 (2004) , 25-42. 
      T. Bartsch  and  T. Weth , Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005) , 259-281. 
      T. Bartsch , T. Weth  and  M. Willem , Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math., 96 (2005) , 1-18. 
      H. Berestycki  and  P. L. Lions , Nonlinear scalar field equations, Ⅱ, Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983) , 347-375. 
      C. Brändle , E. Colorado , A. de Pablo  and  U. Sánchez , A concave-convex elliptic problem involving the fractional Laplacian, Proc. R. Soc. Edinb., 143(A) (2013) , 39-71. 
      L. Caffarelli , J. M. Roquejoffre  and  Y. Sire , Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010) , 1151-1179. 
      L. Caffarelli , S. Salsa  and  L. Silvestre , Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008) , 425-461. 
      A. Capella , J. Dacila , L. Dupaigne  and  Y. Sire , Regularity of radial extremal solutions for some nonlocal semilinear equations, Commmun. Part. Diff. Eq., 36 (2011) , 1353-1384. 
      A. Castro , J. Cossio  and  J. Neuberger , A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math., 27 (1997) , 1041-1053. 
      S. Y. A. Chang  and  M. González , Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011) , 1410-1432. 
      S. T. Chen , Y. B. Li  and  X. H. Tang , Sign-changing solutions for asymptotically linear Schrodinger equation in bounded domains, Electron. J. Differ. Eq., 317 (2016) , 1-9. 
      E. Di Nezza , G. Palatucci  and  E. Valdinoci , Hitchhiker's guide to the fractional sobolev spaces, Bull. Sci. Math., 136 (2012) , 521-573. 
      Z. Gao , X. H. Tang  and  W. Zhang , Least energy sign-changing solutions for nonlinear problems involving fractional laplacian, Electron. J. Differ. Eq., 238 (2016) , 1-6. 
      Z. L. Liu  and  J. X. Sun , Invariant Sets of Descending Flow in Critical Point Theory with Applications to Nonlinear Differential Equations, J. Diff. Eqns., 172 (2001) , 257-299. 
      X. Y. Lin  and  X. H. Tang , An asymptotically periodic and asymptotically linear Schrödinger equation with indefinite linear part, Comput. Math. Appl., 70 (2015) , 726-736. 
      C. Miranda , Un'osservazione sul teorema di Brouwer, Boll. Unione Mat. Ital., 3 (1940) , 5-7. 
      E. S. Noussair  and  J. Wei , On the effect of the domain geometry on the existence and profile of nodal solution of some singularly perturbed semilinear Dirichlet problem, Indiana Univ. Math. J., 46 (1997) , 1255-1271. 
      M. Schechter , Z. Q. Wang  and  W. Zou , New Linking Theorem and Sign-Changing Solutions, Commmun. Part. Diff. Eq., 29 (2005) , 471-488. 
      M. Schechter  and  W. Zou , Sign-changing critical points from linking type theorems, Trans. Amer. Math. Soc., 358 (2006) , 5293-5318. 
      R. Servadei  and  E. Valdinoci , Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013) , 2105-2137. 
      R. Servadei  and  E. Valdinoci , Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012) , 887-898. 
      L. Silvestre , Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2006) , 67-112. 
      X. H. Tang , Non-nehari-manifold method for asymptotically linear Schrödinger equation, J. Aust. Math. Soc., 98 (2015) , 104-116. 
      X. H. Tang  and  S. T. Chen , Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials, Disc. Contin. Dyn. Syst.-Series A., 37 (2017) , 4973-5002. 
      Z. Wang  and  H. Zhou , Radial sign-changing solution for fractional Schrödinger equation, Discrete Contin. Dyn. Syst., 36 (2016) , 499-508. 
      M. WillemMinimax Theorems, Birkhäuser, Basel, 1996. 
      W. Zhang , X. H. Tang  and  J. Zhang , Infinitely many radial and non-radial solutions for a fractional Schrödinger equation, Comput. Math. Appl., 71 (2016) , 737-747. 
  • 加载中
SHARE

Article Metrics

HTML views(496) PDF downloads(329) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return