In this article, we study the existence of sign-changing solutions for a problem driven by a non-local integrodifferential operator with homogeneous Dirichlet boundary condition
$\left\{ \begin{array}{ll}-\mathcal{L}_Ku = f(x,u) &\text{in}~Ω, \\u = 0 &\text{in}~\mathbb{R}^n\setminusΩ, \end{array} \right.\ \ \ \ \ \ \ \ \ \left( 1 \right)$
where $Ω\subset\mathbb{R}^n(n≥2)$ is a bounded, smooth domain and $f(x, u)$ is asymptotically linear at infinity with respect to $u$. By introducing some new ideas and combining constraint variational method with the quantitative deformation lemma, we prove that there exists a sign-changing solution of problem (1).
Citation: |
C. O. Alves
and M. A. S. Souto
, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014)
, 1153-1166.
![]() ![]() |
|
V. Ambrosio and T. Isernia, Sign-changing solutions for a class of fractional Schrödinger equations with vanishing potentials, preprint, arXiv: 1609.09003.
![]() |
|
S. Barile
and G. M. Figueiredo
, Existence of least energy positive, negative and nodal solutions for a class of $p q-$problems with potentials vanishing at infinity, J. Math. Anal. Appl., 427 (2015)
, 1205-1233.
![]() ![]() |
|
B. Barrios
, E. Colorado
, A. de Pablo
and U. Sánchez
, On some critical problems for the fractional Laplace operator, J. Diff. Eqns., 252 (2012)
, 6133-6162.
![]() ![]() |
|
T. Bartsch
, Z. Liu
and T. Weth
, Sign changing solutions of superlinear Schrödinger equations, Commmun. Part. Diff. Eq., 29 (2004)
, 25-42.
![]() ![]() |
|
T. Bartsch
and T. Weth
, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005)
, 259-281.
![]() ![]() |
|
T. Bartsch
, T. Weth
and M. Willem
, Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math., 96 (2005)
, 1-18.
![]() |
|
H. Berestycki
and P. L. Lions
, Nonlinear scalar field equations, Ⅱ, Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983)
, 347-375.
![]() ![]() |
|
C. Brändle
, E. Colorado
, A. de Pablo
and U. Sánchez
, A concave-convex elliptic problem involving the fractional Laplacian, Proc. R. Soc. Edinb., 143(A) (2013)
, 39-71.
![]() ![]() |
|
L. Caffarelli
, J. M. Roquejoffre
and Y. Sire
, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010)
, 1151-1179.
![]() ![]() |
|
L. Caffarelli
, S. Salsa
and L. Silvestre
, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008)
, 425-461.
![]() ![]() |
|
A. Capella
, J. Dacila
, L. Dupaigne
and Y. Sire
, Regularity of radial extremal solutions for some nonlocal semilinear equations, Commmun. Part. Diff. Eq., 36 (2011)
, 1353-1384.
![]() ![]() |
|
A. Castro
, J. Cossio
and J. Neuberger
, A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math., 27 (1997)
, 1041-1053.
![]() ![]() |
|
S. Y. A. Chang
and M. González
, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011)
, 1410-1432.
![]() ![]() |
|
S. T. Chen
, Y. B. Li
and X. H. Tang
, Sign-changing solutions for asymptotically linear Schrodinger equation in bounded domains, Electron. J. Differ. Eq., 317 (2016)
, 1-9.
![]() ![]() |
|
E. Di Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhiker's guide to the fractional sobolev spaces, Bull. Sci. Math., 136 (2012)
, 521-573.
![]() ![]() |
|
Z. Gao
, X. H. Tang
and W. Zhang
, Least energy sign-changing solutions for nonlinear problems involving fractional laplacian, Electron. J. Differ. Eq., 238 (2016)
, 1-6.
![]() ![]() |
|
Z. L. Liu
and J. X. Sun
, Invariant Sets of Descending Flow in Critical Point Theory with Applications to Nonlinear Differential Equations, J. Diff. Eqns., 172 (2001)
, 257-299.
![]() ![]() |
|
X. Y. Lin
and X. H. Tang
, An asymptotically periodic and asymptotically linear Schrödinger equation with indefinite linear part, Comput. Math. Appl., 70 (2015)
, 726-736.
![]() ![]() |
|
C. Miranda
, Un'osservazione sul teorema di Brouwer, Boll. Unione Mat. Ital., 3 (1940)
, 5-7.
![]() ![]() |
|
E. S. Noussair
and J. Wei
, On the effect of the domain geometry on the existence and profile of nodal solution of some singularly perturbed semilinear Dirichlet problem, Indiana Univ. Math. J., 46 (1997)
, 1255-1271.
![]() ![]() |
|
M. Schechter
, Z. Q. Wang
and W. Zou
, New Linking Theorem and Sign-Changing Solutions, Commmun. Part. Diff. Eq., 29 (2005)
, 471-488.
![]() ![]() |
|
M. Schechter
and W. Zou
, Sign-changing critical points from linking type theorems, Trans. Amer. Math. Soc., 358 (2006)
, 5293-5318.
![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013)
, 2105-2137.
![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012)
, 887-898.
![]() ![]() |
|
L. Silvestre
, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2006)
, 67-112.
![]() ![]() |
|
X. H. Tang
, Non-nehari-manifold method for asymptotically linear Schrödinger equation, J. Aust. Math. Soc., 98 (2015)
, 104-116.
![]() ![]() |
|
X. H. Tang
and S. T. Chen
, Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials, Disc. Contin. Dyn. Syst.-Series A., 37 (2017)
, 4973-5002.
![]() ![]() |
|
Z. Wang
and H. Zhou
, Radial sign-changing solution for fractional Schrödinger equation, Discrete Contin. Dyn. Syst., 36 (2016)
, 499-508.
![]() ![]() |
|
M. Willem, Minimax Theorems, Birkhäuser, Basel, 1996.
![]() ![]() |
|
W. Zhang
, X. H. Tang
and J. Zhang
, Infinitely many radial and non-radial solutions for a fractional Schrödinger equation, Comput. Math. Appl., 71 (2016)
, 737-747.
![]() ![]() |