• Previous Article
    Sign-changing solutions for non-local elliptic equations with asymptotically linear term
  • CPAA Home
  • This Issue
  • Next Article
    Traveling wave solutions of a diffusive ratio-dependent Holling-Tanner system with distributed delay
May  2018, 17(3): 1161-1178. doi: 10.3934/cpaa.2018056

Nonlocal heat equations: Regularizing effect, decay estimates and Nash inequalities

Departamento de Matemáticas; Universidad Carlos Ⅲ de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain

* Corresponding author

Received  January 2017 Revised  February 2017 Published  January 2018

Fund Project: Work partially supported by Spanish project MTM2011-25287

We study the short and large time behaviour of solutions of nonlocal heat equations of the form $\partial_tu+\mathcal{L} u = 0$. Here $\mathcal{L}$ is an integral operator given by a symmetric nonnegative kernel of Lévy type, that includes bounded and unbounded transition probability densities. We characterize when a regularizing effect occurs for small times and obtain $L^q$-$L^p$ decay estimates, $1≤ q < p < ∞$ when the time is large. These properties turn out to depend only on the behaviour of the kernel at the origin or at infinity, respectively, without need of any information at the other end. An equivalence between the decay and a restricted Nash inequality is shown. Finally we deal with the decay of nonlinear nonlocal equations of porous medium type $\partial_tu+\mathcal{L}Φ(u) = 0$.

Citation: Cristina Brändle, Arturo De Pablo. Nonlocal heat equations: Regularizing effect, decay estimates and Nash inequalities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1161-1178. doi: 10.3934/cpaa.2018056
References:
[1]

M. T. BarlowR. F. BassZ.-Q. Chen and M. Kassmann, Non-local Dirichlet forms and symmetric jump processes, Trans. Amer. Math. Soc., 361 (2009), 1963-1999. doi: 10.1090/S0002-9947-08-04544-3. Google Scholar

[2]

B. BarriosI. PeralF. Soria and E. Valdinoci, A Widder's type theorem for the heat equation with nonlocal diffusion, Arch. Ration. Mech. Anal., 213 (2014), 629-650. doi: 10.1007/s00205-014-0733-1. Google Scholar

[3]

R. F. Bass and D. A. Levin, Transition probabilities for symmetric jump processes, Trans. Amer. Math. Soc., 354 (2002), 2933-2953 (electronic). doi: 10.1090/S0002-9947-02-02998-7. Google Scholar

[4]

J. Bertoin, Lévy Processes, vol. 121 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1996. Google Scholar

[5]

N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, vol. 27 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1989. Google Scholar

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. Google Scholar

[7]

E. A. CarlenS. Kusuoka and D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist., 23 (1987), 245-287. Google Scholar

[8]

E. ChasseigneP. FelmerJ. D. Rossi and E. Topp, Fractional decay bounds for nonlocal zero order heat equations, Bull. Lond. Math. Soc., 46 (2014), 943-952. doi: 10.1112/blms/bdu042. Google Scholar

[9]

E. ChasseigneM. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl., 86 (2006), 271-291. doi: 10.1016/j.matpur.2006.04.005. Google Scholar

[10]

T. Coulhon, Ultracontractivity and Nash type inequalities, J. Funct. Anal., 141 (1996), 510-539. doi: 10.1006/jfan.1996.0140. Google Scholar

[11]

A. de PabloF. QuirósA. Rodríguez and J. L. Vázquez, A general fractional porous medium equation, Comm. Pure Appl. Math., 65 (2012), 1242-1284. doi: 10.1002/cpa.21408. Google Scholar

[12]

M. Fukushima, Dirichlet Forms and Markov Processes, vol. 23 of North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam, 1980. Google Scholar

[13]

L. I. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods, J. Math. Pures Appl., 92 (2009), 163-187. doi: 10.1016/j.matpur.2009.04.009. Google Scholar

[14]

M. Kassmann and A. Mimica, Intrinsic scaling properties for nonlocal operators, J. Eur. Math. Soc., 19 (2017), 983-1011. doi: 10.4171/JEMS/686. Google Scholar

[15]

M. Kassmann and R. W. Schwab, Regularity results for nonlocal parabolic equations, Riv. Math. Univ. Parma (N.S.), 5 (2014), 183-212. Google Scholar

[16]

T. Komatsu, Continuity estimates for solutions of parabolic equations associated with jump type Dirichlet forms, Osaka J. Math., 25 (1988), 697-728. Google Scholar

[17]

A. Mimica, Heat kernel upper estimates for symmetric jump processes with small jumps of high intensity, Potential Anal., 36 (2012), 203-222. doi: 10.1007/s11118-011-9225-1. Google Scholar

[18]

J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80 (1958), 931-954. doi: 10.2307/2372841. Google Scholar

[19]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153. Google Scholar

[20]

E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, vol. 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, Ⅲ. Google Scholar

[21]

D. W. Stroock, An Introduction to the Theory of Large Deviations, Universitext, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4613-8514-1. Google Scholar

[22]

P. Sztonyk, Transition density estimates for jump Lévy processes, Stochastic Process. Appl., 121 (2011), 1245-1265. doi: 10.1016/j.spa.2011.03.002. Google Scholar

[23]

N. T. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal., 63 (1985), 240-260. doi: 10.1016/0022-1236(85)90087-4. Google Scholar

show all references

References:
[1]

M. T. BarlowR. F. BassZ.-Q. Chen and M. Kassmann, Non-local Dirichlet forms and symmetric jump processes, Trans. Amer. Math. Soc., 361 (2009), 1963-1999. doi: 10.1090/S0002-9947-08-04544-3. Google Scholar

[2]

B. BarriosI. PeralF. Soria and E. Valdinoci, A Widder's type theorem for the heat equation with nonlocal diffusion, Arch. Ration. Mech. Anal., 213 (2014), 629-650. doi: 10.1007/s00205-014-0733-1. Google Scholar

[3]

R. F. Bass and D. A. Levin, Transition probabilities for symmetric jump processes, Trans. Amer. Math. Soc., 354 (2002), 2933-2953 (electronic). doi: 10.1090/S0002-9947-02-02998-7. Google Scholar

[4]

J. Bertoin, Lévy Processes, vol. 121 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1996. Google Scholar

[5]

N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, vol. 27 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1989. Google Scholar

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. Google Scholar

[7]

E. A. CarlenS. Kusuoka and D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist., 23 (1987), 245-287. Google Scholar

[8]

E. ChasseigneP. FelmerJ. D. Rossi and E. Topp, Fractional decay bounds for nonlocal zero order heat equations, Bull. Lond. Math. Soc., 46 (2014), 943-952. doi: 10.1112/blms/bdu042. Google Scholar

[9]

E. ChasseigneM. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl., 86 (2006), 271-291. doi: 10.1016/j.matpur.2006.04.005. Google Scholar

[10]

T. Coulhon, Ultracontractivity and Nash type inequalities, J. Funct. Anal., 141 (1996), 510-539. doi: 10.1006/jfan.1996.0140. Google Scholar

[11]

A. de PabloF. QuirósA. Rodríguez and J. L. Vázquez, A general fractional porous medium equation, Comm. Pure Appl. Math., 65 (2012), 1242-1284. doi: 10.1002/cpa.21408. Google Scholar

[12]

M. Fukushima, Dirichlet Forms and Markov Processes, vol. 23 of North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam, 1980. Google Scholar

[13]

L. I. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods, J. Math. Pures Appl., 92 (2009), 163-187. doi: 10.1016/j.matpur.2009.04.009. Google Scholar

[14]

M. Kassmann and A. Mimica, Intrinsic scaling properties for nonlocal operators, J. Eur. Math. Soc., 19 (2017), 983-1011. doi: 10.4171/JEMS/686. Google Scholar

[15]

M. Kassmann and R. W. Schwab, Regularity results for nonlocal parabolic equations, Riv. Math. Univ. Parma (N.S.), 5 (2014), 183-212. Google Scholar

[16]

T. Komatsu, Continuity estimates for solutions of parabolic equations associated with jump type Dirichlet forms, Osaka J. Math., 25 (1988), 697-728. Google Scholar

[17]

A. Mimica, Heat kernel upper estimates for symmetric jump processes with small jumps of high intensity, Potential Anal., 36 (2012), 203-222. doi: 10.1007/s11118-011-9225-1. Google Scholar

[18]

J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80 (1958), 931-954. doi: 10.2307/2372841. Google Scholar

[19]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153. Google Scholar

[20]

E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, vol. 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, Ⅲ. Google Scholar

[21]

D. W. Stroock, An Introduction to the Theory of Large Deviations, Universitext, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4613-8514-1. Google Scholar

[22]

P. Sztonyk, Transition density estimates for jump Lévy processes, Stochastic Process. Appl., 121 (2011), 1245-1265. doi: 10.1016/j.spa.2011.03.002. Google Scholar

[23]

N. T. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal., 63 (1985), 240-260. doi: 10.1016/0022-1236(85)90087-4. Google Scholar

[1]

María Anguiano, P.E. Kloeden. Asymptotic behaviour of the nonautonomous SIR equations with diffusion. Communications on Pure & Applied Analysis, 2014, 13 (1) : 157-173. doi: 10.3934/cpaa.2014.13.157

[2]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[3]

Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393

[4]

Toru Sasaki, Takashi Suzuki. Asymptotic behaviour of the solutions to a virus dynamics model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 525-541. doi: 10.3934/dcdsb.2017206

[5]

Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Asymptotic behaviour for operators of Grushin type: Invariant measure and singular perturbations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 119-128. doi: 10.3934/dcdss.2019008

[6]

Jorge Ferreira, Mauro De Lima Santos. Asymptotic behaviour for wave equations with memory in a noncylindrical domains. Communications on Pure & Applied Analysis, 2003, 2 (4) : 511-520. doi: 10.3934/cpaa.2003.2.511

[7]

Liviu I. Ignat, Ademir F. Pazoto. Large time behaviour for a nonlocal diffusion - convection equation related with gas dynamics. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3575-3589. doi: 10.3934/dcds.2014.34.3575

[8]

Carmen Cortázar, Manuel Elgueta, Fernando Quirós, Noemí Wolanski. Asymptotic behavior for a nonlocal diffusion equation on the half line. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1391-1407. doi: 10.3934/dcds.2015.35.1391

[9]

Abdelaziz Rhandi, Roland Schnaubelt. Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 663-683. doi: 10.3934/dcds.1999.5.663

[10]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅰ): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic & Related Models, 2017, 10 (1) : 33-59. doi: 10.3934/krm.2017002

[11]

Yutian Lei, Chao Ma. Asymptotic behavior for solutions of some integral equations. Communications on Pure & Applied Analysis, 2011, 10 (1) : 193-207. doi: 10.3934/cpaa.2011.10.193

[12]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[13]

Kunquan Lan, Wei Lin. Lyapunov type inequalities for Hammerstein integral equations and applications to population dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1943-1960. doi: 10.3934/dcdsb.2018256

[14]

Siwei Duo, Hong Wang, Yanzhi Zhang. A comparative study on nonlocal diffusion operators related to the fractional Laplacian. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 231-256. doi: 10.3934/dcdsb.2018110

[15]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

[16]

Matteo Bonforte, Yannick Sire, Juan Luis Vázquez. Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5725-5767. doi: 10.3934/dcds.2015.35.5725

[17]

Tomás Caraballo, I. D. Chueshov, Pedro Marín-Rubio, José Real. Existence and asymptotic behaviour for stochastic heat equations with multiplicative noise in materials with memory. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 253-270. doi: 10.3934/dcds.2007.18.253

[18]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

[19]

Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039

[20]

M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Second-order evolution equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4239-4247. doi: 10.3934/dcds.2017181

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (79)
  • HTML views (407)
  • Cited by (1)

Other articles
by authors

[Back to Top]