We study in detail the existence, nonexistence and behavior of global minimizers, ground states and corresponding energy levels of the $(p, q)$ -Laplace equation $-Δ_p u -Δ_q u = α |u|^{p-2}u + β |u|^{q-2}u$ in a bounded domain $Ω \subset \mathbb{R}^N$ under zero Dirichlet boundary condition, where $p > q > 1$ and $α, β ∈ \mathbb{R}$ . A curve on the $(α, β)$ -plane which allocates a set of the existence of ground states and the multiplicity of positive solutions is constructed. Additionally, we show that eigenfunctions of the p-and q-Laplacians under zero Dirichlet boundary condition are linearly independent.
Citation: |
S. Aizicovici
, N. S. Papageorgiou
and V. Staicu
, Nodal solutions for (p, 2)-equations, Transactions of the American Mathematical Society, 367 (2015)
, 7343-7372.
doi: 10.1090/S0002-9947-2014-06324-1.![]() ![]() ![]() |
|
M. J. Alves
, R. B. Assunç ao
and O. H. Miyagaki
, Existence result for a class of quasilinear elliptic equations with (p − q)-Laplacian and vanishing potentials, Illinois Journal of Mathematics, 59 (2015)
, 545-575.
![]() ![]() |
|
A. Anane
, Simplicité et isolation de la premiere valeur propre du p-laplacien avec poids, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, 305 (1987)
, 725-728.
![]() ![]() |
|
J. Bellazzini
and N. Visciglia
, Max-min characterization of the mountain pass energy level
for a class of variational problems, Proceedings of the American Mathematical Society, 138 (2010)
, 3335-3343.
doi: 10.1090/S0002-9939-10-10415-8.![]() ![]() ![]() |
|
V. Benci
, P. D'Avenia
, D. Fortunato
and L. Pisani
, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Archive for Rational Mechanics and Analysis, 154 (2000)
, 297-324.
doi: 10.1007/s002050000101.![]() ![]() ![]() |
|
V. Bobkov
and M. Tanaka
, On positive solutions for (p, q)-Laplace equations with two parameters, Calculus of Variations and Partial Differential Equations, 54 (2015)
, 3277-3301.
doi: 10.1007/s00526-015-0903-5.![]() ![]() ![]() |
|
V. Bobkov and M. Tanaka, On sign-changing solutions for (p, q)-Laplace equations with two parameters Advances in Nonlinear Analysis.
doi: 10.1515/anona-2016-0172.![]() ![]() |
|
P. J. Bushell
and D. E. Edmunds
, Remarks on generalised trigonometric functions, Rocky
Mountain Journal of Mathematics, 42 (2012)
, 25-57.
doi: 10.1216/rmj-2012-42-1-25.![]() ![]() |
|
J. W. Cahn
and J. E. Hilliard
, Free energy of a nonuniform system. I. Interfacial free energy, The Journal of chemical physics, 28 (1958)
, 258-267.
doi: 10.1063/1.1744102.![]() ![]() |
|
L. Cherfils
and Y. Il'yasov
, On the stationary solutions of generalized reaction diffusion equations with p&q-laplacian, Communications on Pure and Applied Mathematics, 4 (2005)
, 9-22.
doi: 10.3934/cpaa.2005.4.9.![]() ![]() ![]() |
|
I. Chueshov
and I. Lasiecka
, Existence, uniqueness of weak solutions and global attractors
for a class of nonlinear 2D Kirchhoff-Boussinesq models, Discrete and Continuous Dynamical
Systems, 15 (2006)
, 777-809.
doi: 10.3934/dcds.2006.15.777.![]() ![]() ![]() |
|
M. Colombo
and M. Colombo
, Regularity for double phase variational problems, Archive for
Rational Mechanics and Analysis, 215 (2015)
, 443-496.
doi: 10.1007/s00205-014-0785-2.![]() ![]() ![]() |
|
M. Cuesta
, D. de Figueiredo
and J.-P. Gossez
, The beginning of the Fučik spectrum for the
p-Laplacian, Journal of Differential Equations, 159 (1999)
, 212-238.
doi: 10.1006/jdeq.1999.3645.![]() ![]() ![]() |
|
L. Damascelli
and B. Sciunzi
, Regularity, monotonicity and symmetry of positive solutions of
m-Laplace equations, Journal of Differential Equations, 206 (2004)
, 483-515.
doi: 10.1016/j.jde.2004.05.012.![]() ![]() ![]() |
|
P. Drábek
, Geometry of the energy functional and the Fredholm alternative for the p-Laplacian
in higher dimensions, 2001-Luminy Conference on Quasilinear Elliptic and Parabolic Equations and System, Electronic Journal of Differential Equations, Conference 08 (2002)
, 103-120.
![]() ![]() |
|
P. Drábek, A. Kufner and F. Nicolosi,
Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter, 1997.
![]() ![]() |
|
P. Drábek and J. Milota,
Methods of Nonlinear Analysis: Applications to Differential Equations, 2nd edition, Springer, 2013.
doi: 10.1007/978-3-0348-0387-8.![]() ![]() ![]() |
|
L. F. Faria
, O. H. Miyagaki
and D. Motreanu
, Comparison and positive solutions for problems
with the (p, q)-Laplacian and a convection term, Proceedings of the Edinburgh Mathematical
Society (Series 2), 57 (2014)
, 687-698.
doi: 10.1017/S0013091513000576.![]() ![]() ![]() |
|
G. M. Figueiredo
, Existence of positive solutions for a class of p&q elliptic problems with critical growth on $\mathbb{R}^N$, Journal of Mathematical Analysis and Applications, 378 (2011)
, 507-518.
doi: 10.1016/j.jmaa.2011.02.017.![]() ![]() ![]() |
|
J. García-Melián
, On the behavior of the first eigenfunction of the p-Laplacian near its critical points, Bulletin of the London Mathematical Society, 35 (2003)
, 391-400.
doi: 10.1112/S0024609303001966.![]() ![]() |
|
J. Fleckinger-Pellé
and P. Takáč
, An improved Poincaré inequality and the p-Laplacian at resonance for p>2, Advances in Differential Equations, 7 (2002)
, 951-971.
![]() ![]() |
|
Y. S. Il'yasov
, Bifurcation calculus by the extended functional method, Functional Analysis and Its Applications, 41 (2007)
, 18-30.
doi: 10.1007/s10688-007-0002-2.![]() ![]() ![]() |
|
Y. Il'yasov and K. Silva, On branches of positive solutions for p-Laplacian problems at the extreme value of Nehari manifold method, preprint,arXiv: 1704.02477.
![]() |
|
L. Jeanjean
and K. Tanaka
, A remark on least energy solutions in $\mathbb{R}^N$, Proceedings of the American Mathematical Society, 131 (2003)
, 2399-2408.
![]() ![]() |
|
R. Kajikiya
, M. Tanaka
and S. Tanaka
, Bifurcation of positive solutions for the one dimensional (p, q)-Laplace equation, Electronic Journal of Differential Equations, 2017 (2017)
, 1-37.
![]() ![]() |
|
G. M. Lieberman
, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Analysis: Theory, Methods & Applications, 12 (1988)
, 1203-1219.
doi: 10.1016/0362-546X(88)90053-3.![]() ![]() ![]() |
|
G. M. Lieberman
, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Communications in Partial Differential Equations, 16 (1991)
, 311-361.
doi: 10.1080/03605309108820761.![]() ![]() ![]() |
|
S. Marano
and S. Mosconi
, Some recent results on the Dirichlet problem for (p, q)-Laplace equations, Discrete and Continuous Dynamical Systems -Series S, 11 (2018)
, 279-291.
doi: 10.3934/dcdss.2018015.![]() ![]() |
|
S. A. Marano
and N. S. Papageorgiou
, Constant-sign and nodal solutions of coercive $(p, q)$-Laplacian problems, Nonlinear Analysis: Theory, Methods & Applications, 77 (2013)
, 118-129.
doi: 10.1016/j.na.2012.09.007.![]() ![]() ![]() |
|
D. Motreanu
and M. Tanaka
, On a positive solution for $(p, q)$-Laplace equation with indefinite weight, Minimax Theory and its Applications, 1 (2016)
, 1-20.
![]() ![]() |
|
S. I. Pohozaev, Nonlinear variational problems via the fibering method, in Handbook of differential equations: stationary partial differential equations (ed. M. Chipot), 5 (2008), 49–209.
doi: 10.1016/S1874-5733(08)80009-5.![]() ![]() ![]() |
|
P. Pucci and J. Serrin,
The Maximum Principle, Springer, 2007.
doi: 10.1007/978-3-7643-8145-5.![]() ![]() ![]() |
|
J. Sun, J. Chu and T. F. Wu, Existence and multiplicity of nontrivial solutions for some biharmonic equations with p-Laplacian Journal of Differential Equations,
262 (2017), 945-977.
doi: 10.016/j.jde.2016.10.001.![]() ![]() ![]() |
|
P. Takáč
, On the Fredholm alternative for the $p$-Laplacian at the first eigenvalue, Indiana University Mathematics Journal, 51 (2002)
, 187-238.
doi: 10.1512/iumj.2002.51.2156.![]() ![]() ![]() |
|
M. Tanaka, Uniqueness of a positive solution and existence of a sign-changing solution for (p, q)-Laplace equation, Journal of Nonlinear Functional Analysis, 2014 (2014), 1–15.
![]() |
|
M. Tanaka
, Generalized eigenvalue problems for (p, q)-Laplacian with indefinite weight, Journal of Mathematical Analysis and Applications, 419 (2014)
, 1181-1192.
doi: 10.1016/j.jmaa.2014.05.044.![]() ![]() ![]() |
|
P. Tolksdorf
, Regularity for a more general class of quasilinear elliptic equations, Journal of Differential equations, 51 (1984)
, 126-150.
doi: 10.1016/0022-0396(84)90105-0.![]() ![]() ![]() |
|
H. Yin
and Z. Yang
, A class of p-q-Laplacian type equation with concave-convex nonlinearities in bounded domain, Journal of Mathematical Analysis and Applications, 382 (2011)
, 843-855.
doi: 10.1016/j.jmaa.2011.04.090.![]() ![]() ![]() |
|
V. E. Zakharov, Collapse of Langmuir waves,
Soviet Journal of Experimental and Theoretical Physics,
35 (1972), 908-914.
![]() |
The global minimum
The least energy