
-
Previous Article
Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application
- CPAA Home
- This Issue
-
Next Article
Remarks on minimizers for (p, q)-Laplace equations with two parameters
A loop type component in the non-negative solutions set of an indefinite elliptic problem
1. | Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile |
2. | Department of Mathematics, Faculty of Education, Ibaraki University, Mito 310-8512, Japan |
We prove the existence of a loop type component of non-negative solutions for an indefinite elliptic equation with a homogeneous Neumann boundary condition. This result complements our previous results obtained in [
References:
[1] |
H. Amann,
Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.
|
[2] |
H. Amann and J. López-Gómez,
A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations, 146 (1998), 336-374.
|
[3] |
K. J. Brown,
Local and global bifurcation results for a semilinear boundary value problem, J. Differential Equations, 239 (2007), 296-310.
|
[4] |
K. J. Brown and S. S. Lin,
On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function, J. Math. Anal. Appl., 75 (1980), 112-120.
|
[5] |
S. Cano-Casanova,
Compact components of positive solutions for superlinear indefinite elliptic problems of mixed type, Topol. Methods Nonlinear Anal., 23 (2004), 45-72.
|
[6] |
S. Cingolani and J. L. Gámez,
Positive solutions of a semilinear elliptic equation on $\mathbf{R}^ N$ with indefinite nonlinearity, Adv. Differential Equations, 1 (1996), 773-791.
|
[7] |
M. G. Crandall and P. H. Rabinowitz,
Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
|
[8] |
D. Gilbarg and N. S. Trudinger,
Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[9] |
J. López-Gómez,
Spectral Theory and Nonlinear Functional Analysis, Research Notes in Mathematics 426, Chapman & Hall/CRC, Boca Raton, FL, 2001. |
[10] |
J. López-Gómez and M. Molina-Meyer,
Bounded components of positive solutions of abstract fixed point equations: mushrooms, loops and isolas, J. Differential Equations, 209 (2005), 416-441.
|
[11] |
P. H. Rabinowitz,
Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), 487-513.
|
[12] |
H. Ramos Quoirin and K. Umezu,
An indefinite concave-convex equation under a Neumann boundary condition I, Israel J. Math., 220 (2017), 103-160.
|
[13] |
H. Ramos Quoirin and K. Umezu,
An indefinite concave-convex equation under a Neumann boundary condition II, Topol. Methods Nonlinear Anal., 49 (2017), 739-756.
|
[14] |
K. Umezu,
Global bifurcation results for semilinear elliptic boundary value problems with indefinite weights and nonlinear boundary conditions, Nonlinear Differential Equations Appl. NoDEA, 17 (2010), 323-336.
|
[15] |
G. T. Whyburn,
Topological Analysis, Second, revised edition, Princeton Mathematical Series, No. 23, Princeton University Press, Princeton, N. J., 1964. |
show all references
References:
[1] |
H. Amann,
Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.
|
[2] |
H. Amann and J. López-Gómez,
A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations, 146 (1998), 336-374.
|
[3] |
K. J. Brown,
Local and global bifurcation results for a semilinear boundary value problem, J. Differential Equations, 239 (2007), 296-310.
|
[4] |
K. J. Brown and S. S. Lin,
On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function, J. Math. Anal. Appl., 75 (1980), 112-120.
|
[5] |
S. Cano-Casanova,
Compact components of positive solutions for superlinear indefinite elliptic problems of mixed type, Topol. Methods Nonlinear Anal., 23 (2004), 45-72.
|
[6] |
S. Cingolani and J. L. Gámez,
Positive solutions of a semilinear elliptic equation on $\mathbf{R}^ N$ with indefinite nonlinearity, Adv. Differential Equations, 1 (1996), 773-791.
|
[7] |
M. G. Crandall and P. H. Rabinowitz,
Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
|
[8] |
D. Gilbarg and N. S. Trudinger,
Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[9] |
J. López-Gómez,
Spectral Theory and Nonlinear Functional Analysis, Research Notes in Mathematics 426, Chapman & Hall/CRC, Boca Raton, FL, 2001. |
[10] |
J. López-Gómez and M. Molina-Meyer,
Bounded components of positive solutions of abstract fixed point equations: mushrooms, loops and isolas, J. Differential Equations, 209 (2005), 416-441.
|
[11] |
P. H. Rabinowitz,
Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), 487-513.
|
[12] |
H. Ramos Quoirin and K. Umezu,
An indefinite concave-convex equation under a Neumann boundary condition I, Israel J. Math., 220 (2017), 103-160.
|
[13] |
H. Ramos Quoirin and K. Umezu,
An indefinite concave-convex equation under a Neumann boundary condition II, Topol. Methods Nonlinear Anal., 49 (2017), 739-756.
|
[14] |
K. Umezu,
Global bifurcation results for semilinear elliptic boundary value problems with indefinite weights and nonlinear boundary conditions, Nonlinear Differential Equations Appl. NoDEA, 17 (2010), 323-336.
|
[15] |
G. T. Whyburn,
Topological Analysis, Second, revised edition, Princeton Mathematical Series, No. 23, Princeton University Press, Princeton, N. J., 1964. |




[1] |
Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539 |
[2] |
Kewei Zhang. On non-negative quasiconvex functions with quasimonotone gradients and prescribed zero sets. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 353-366. doi: 10.3934/dcds.2008.21.353 |
[3] |
Emmanuele DiBenedetto, Ugo Gianazza, Naian Liao. On the local behavior of non-negative solutions to a logarithmically singular equation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1841-1858. doi: 10.3934/dcdsb.2012.17.1841 |
[4] |
Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768 |
[5] |
Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481 |
[6] |
Genni Fragnelli, Paolo Nistri, Duccio Papini. Non-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 35-64. doi: 10.3934/dcds.2011.31.35 |
[7] |
Genni Fragnelli, Paolo Nistri, Duccio Papini. Corrigendum: Nnon-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3831-3834. doi: 10.3934/dcds.2013.33.3831 |
[8] |
Dachun Yang, Sibei Yang. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2135-2160. doi: 10.3934/cpaa.2016031 |
[9] |
Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355 |
[10] |
Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193 |
[11] |
Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011 |
[12] |
Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 |
[13] |
Xiaojun Zheng, Zhongdan Huan, Jun Liu. On the solvability of a semilinear higher-order elliptic problem for the vector field method in image registration. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2679-2700. doi: 10.3934/cpaa.2022068 |
[14] |
Anna Lisa Amadori. Global bifurcation for the Hénon problem. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4797-4816. doi: 10.3934/cpaa.2020212 |
[15] |
Zeng Zhang, Zhaoyang Yin. On the Cauchy problem for a four-component Camassa-Holm type system. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5153-5169. doi: 10.3934/dcds.2015.35.5153 |
[16] |
Jiabao Su, Zhaoli Liu. A bounded resonance problem for semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 431-445. doi: 10.3934/dcds.2007.19.431 |
[17] |
José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078 |
[18] |
Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : 47-66. doi: 10.3934/dcdss.2020003 |
[19] |
Elisa Sovrano. Ambrosetti-Prodi type result to a Neumann problem via a topological approach. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 345-355. doi: 10.3934/dcdss.2018019 |
[20] |
Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]