July  2018, 17(4): 1331-1347. doi: 10.3934/cpaa.2018065

Spectral stability of bi-frequency solitary waves in Soler and Dirac-Klein-Gordon models

1. 

Universite Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon CEDEX, France

2. 

Texas A & M University, College Station, TX 77843, USA

3. 

IITP, Moscow 127051, Russia

4. 

St. Petersburg State University, St. Petersburg 199178, Russia

* Corresponding author: Andrew Comech

Received  November 2017 Revised  February 2018 Published  April 2018

Fund Project: The first author aknowledges the support of Region Bourgogne Franche-Comté through the project "Projet du LMB: Analyse mathematique et simulation numérique d'EDP issues de problèmes de contrôle et du trafic routier". The second author was supported by the Russian Foundation for Sciences (project 14-50-00150).

We construct bi-frequency solitary waves of the nonlinear Dirac equation with the scalar self-interaction, known as the Soler model (with an arbitrary nonlinearity and in arbitrary dimension) and the Dirac-Klein-Gordon with Yukawa self-interaction. These solitary waves provide a natural implementation of qubit and qudit states in the theory of quantum computing.

We show the relation of $± 2ω\mathrm{i}$ eigenvalues of the linearization at a solitary wave, Bogoliubov $\mathbf{SU}(1,1)$ symmetry, and the existence of bi-frequency solitary waves. We show that the spectral stability of these waves reduces to spectral stability of usual (one-frequency) solitary waves.

Citation: Nabile Boussïd, Andrew Comech. Spectral stability of bi-frequency solitary waves in Soler and Dirac-Klein-Gordon models. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1331-1347. doi: 10.3934/cpaa.2018065
References:
[1]

A. Aceves, A. Auditore, M. Conforti and C. De Angelis, Discrete localized modes in binary waveguide arrays, in Nonlinear Photonics (NLP), 2013 IEEE 2nd International Workshop, 2013, 38–42. Google Scholar

[2]

A. AuditoreM. ConfortiC. De Angelis and A. B. Aceves, Dark-antidark solitons in waveguide arrays with alternating positive-negative couplings, Optics Communications, 297 (2013), 125-128.   Google Scholar

[3]

G. Berkolaiko and A. Comech, On spectral stability of solitary waves of nonlinear Dirac equation in 1D, Math. Model. Nat. Phenom., 7 (2012), 13-31.  doi: 10.1051/mmnp/20127202.  Google Scholar

[4]

A. BetlejS. SuntsovK. G. MakrisL. JankovicD. N. ChristodoulidesG. I. StegemanJ. FiniR. T. Bise and D. J. DiGiovanni, All-optical switching and multifrequency generation in a dual-core photonic crystal fiber, Opt. Lett., 31 (2006), 1480-1482.   Google Scholar

[5]

N. Boussaïd and A. Comech, Nonrelativistic asymptotics of solitary waves in the Dirac equation with Soler-type nonlinearity, SIAM J. Math. Anal., 49 (2017), 2527-2572.  doi: 10.1137/16M1081385.  Google Scholar

[6]

N. Boussaïd and A. Comech, Spectral stability of small amplitude solitary waves of the Dirac equation with the Soler-type nonlinearity, arXiv e-prints, arXiv: 1705.05481. Google Scholar

[7]

N. Boussaïd and S. Cuccagna, On stability of standing waves of nonlinear Dirac equations, Comm. Partial Differential Equations, 37 (2012), 1001-1056.  doi: 10.1080/03605302.2012.665973.  Google Scholar

[8]

N. J. CerfM. BourennaneA. Karlsson and N. Gisin, Security of quantum key distribution using d-level systems, Physical Review Letters, 88 (2002), 127902.   Google Scholar

[9]

J. M. Chadam and R. T. Glassey, On certain global solutions of the Cauchy problem for the (classical) coupled Klein-Gordon-Dirac equations in one and three space dimensions, Arch. Rational Mech. Anal., 54 (1974), 223-237.  doi: 10.1007/BF00250789.  Google Scholar

[10]

A. ComechT. V. Phan and A. Stefanov, Asymptotic stability of solitary waves in generalized Gross–Neveu model, Ann. Inst. H. Poincare Anal. Non Linéaire, 34 (2017), 157-196.  doi: 10.1016/j.anihpc.2015.11.001.  Google Scholar

[11]

A. ComechM. Guan and S. Gustafson, On linear instability of solitary waves for the nonlinear Dirac equation, Ann. Inst. H. Poincare Anal. Non Linéaire, 31 (2014), 639-654.  doi: 10.1016/j.anihpc.2013.06.001.  Google Scholar

[12]

J. Cuevas-MaraverP. G. KevrekidisA. SaxenaF. CooperA. KhareA. Comech and C. M. Bender, Solitary waves of a $ \mathcal{PT}$-symmetric nonlinear Dirac equation, IEEE Journal of Selected Topics in Quantum Electronics, 22 (2016), 1-9.   Google Scholar

[13]

J. Cuevas-MaraverP. G. KevrekidisA. SaxenaA. Comech and R. Lan, Stability of solitary waves and vortices in a 2D nonlinear Dirac model, Phys. Rev. Lett., 116 (2016), 214101.  doi: 10.1103/PhysRevLett.116.214101.  Google Scholar

[14]

T. DurtD. KaszlikowskiJ.-L. Chen and L. C. Kwek, Security of quantum key distributions with entangled qudits, Phys. Rev. A, 69 (2004), 032313.  doi: 10.1103/PhysRevA.69.032313.  Google Scholar

[15]

B. J. EggletonC. M. De Sterke and R. E. Slusher, Nonlinear pulse propagation in Bragg gratings, J. Opt. Soc. Am. B, 14 (1997), 2980-2993.   Google Scholar

[16]

A. Galindo, A remarkable invariance of classical Dirac Lagrangians, Lett. Nuovo Cimento (2), 20 (1977), 210-212.  doi: 10.1007/BF02785129.  Google Scholar

[17]

D. J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D, 10 (1974), 3235-3253.   Google Scholar

[18]

D. D. Ivanenko, Notes to the theory of interaction via particles, Zh. Éksp. Teor. Fiz, 8 (1938), 260-266.   Google Scholar

[19]

M. KuesC. ReimerP. RoztockiL. R. CortS. SciaraB. WetzelY. ZhangA. CinoS. T. ChuB. E. LittleD. J. MossL. CaspaniJ. Aza and R. Morandotti, On-chip generation of high-dimensional entangled quantum states and their coherent control, Nature, 546 (2017), 622-626.  doi: 10.1038/nature22986.  Google Scholar

[20]

N. Lazarides and G. P. Tsironis, Gain-driven discrete breathers in $\mathcal{P}\mathcal{T}$-symmetric nonlinear metamaterials, Phys. Rev. Lett., 110 (2013), 053901.  doi: 10.1103/PhysRevLett.110.053901.  Google Scholar

[21]

S. Y. Lee and A. Gavrielides, Quantization of the localized solutions in two-dimensional field theories of massive fermions, Phys. Rev. D, 12 (1975), 3880-3886.   Google Scholar

[22]

A. MariniS. Longhi and F. Biancalana, Optical simulation of neutrino oscillations in binary waveguide arrays, Phys. Rev. Lett., 113 (2014), 150401.  doi: 10.1103/PhysRevLett.113.150401.  Google Scholar

[23]

A. A. Melnikov and L. E. Fedichkin, Quantum walks of interacting fermions on a cycle graph, Sci. Rep., 6 (2016), 34226.  doi: 10.1038/srep34226.  Google Scholar

[24]

R. MorandottiD. MandelikY. SilberbergJ. S. AitchisonM. SorelD. N. ChristodoulidesA. A. Sukhorukov and Y. S. Kivshar, Observation of discrete gap solitons in binary waveguide arrays, Opt. Lett., 29 (2004), 2890-2892.   Google Scholar

[25]

T. Ozawa and K. Yamauchi, Structure of Dirac matrices and invariants for nonlinear Dirac equations, Differential Integral Equations, 17 (2004), 971-982.   Google Scholar

[26]

D. E. Pelinovsky and A. Stefanov, Asymptotic stability of small gap solitons in nonlinear Dirac equations, J. Math. Phys., 53 (2012), 073705, 27.  doi: 10.1063/1.4731477.  Google Scholar

[27]

J. SchindlerZ. LinJ. M. LeeH. RamezaniF. M. Ellis and T. Kottos, $\mathcal{PT}$-symmetric electronics, Journal of Physics A: Mathematical and Theoretical, 45 (2012), 444029.   Google Scholar

[28]

J. SchindlerA. LiM. C. ZhengF. M. Ellis and T. Kottos, Experimental study of active LRC circuits with $\mathcal{PT}$ symmetries, Phys. Rev. A, 84 (2011), 040101.  doi: 10.1103/PhysRevA.84.040101.  Google Scholar

[29]

M. Soler, Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, 1 (1970), 2766-2769.   Google Scholar

[30]

W. E. Thirring, A soluble relativistic field theory, Ann. Physics, 3 (1958), 91-112.  doi: 10.1016/0003-4916(58)90015-0.  Google Scholar

[31]

M. Wakano, Intensely localized solutions of the classical Dirac-Maxwell field equations, Progr. Theoret. Phys., 35 (1966), 1117-1141.   Google Scholar

show all references

References:
[1]

A. Aceves, A. Auditore, M. Conforti and C. De Angelis, Discrete localized modes in binary waveguide arrays, in Nonlinear Photonics (NLP), 2013 IEEE 2nd International Workshop, 2013, 38–42. Google Scholar

[2]

A. AuditoreM. ConfortiC. De Angelis and A. B. Aceves, Dark-antidark solitons in waveguide arrays with alternating positive-negative couplings, Optics Communications, 297 (2013), 125-128.   Google Scholar

[3]

G. Berkolaiko and A. Comech, On spectral stability of solitary waves of nonlinear Dirac equation in 1D, Math. Model. Nat. Phenom., 7 (2012), 13-31.  doi: 10.1051/mmnp/20127202.  Google Scholar

[4]

A. BetlejS. SuntsovK. G. MakrisL. JankovicD. N. ChristodoulidesG. I. StegemanJ. FiniR. T. Bise and D. J. DiGiovanni, All-optical switching and multifrequency generation in a dual-core photonic crystal fiber, Opt. Lett., 31 (2006), 1480-1482.   Google Scholar

[5]

N. Boussaïd and A. Comech, Nonrelativistic asymptotics of solitary waves in the Dirac equation with Soler-type nonlinearity, SIAM J. Math. Anal., 49 (2017), 2527-2572.  doi: 10.1137/16M1081385.  Google Scholar

[6]

N. Boussaïd and A. Comech, Spectral stability of small amplitude solitary waves of the Dirac equation with the Soler-type nonlinearity, arXiv e-prints, arXiv: 1705.05481. Google Scholar

[7]

N. Boussaïd and S. Cuccagna, On stability of standing waves of nonlinear Dirac equations, Comm. Partial Differential Equations, 37 (2012), 1001-1056.  doi: 10.1080/03605302.2012.665973.  Google Scholar

[8]

N. J. CerfM. BourennaneA. Karlsson and N. Gisin, Security of quantum key distribution using d-level systems, Physical Review Letters, 88 (2002), 127902.   Google Scholar

[9]

J. M. Chadam and R. T. Glassey, On certain global solutions of the Cauchy problem for the (classical) coupled Klein-Gordon-Dirac equations in one and three space dimensions, Arch. Rational Mech. Anal., 54 (1974), 223-237.  doi: 10.1007/BF00250789.  Google Scholar

[10]

A. ComechT. V. Phan and A. Stefanov, Asymptotic stability of solitary waves in generalized Gross–Neveu model, Ann. Inst. H. Poincare Anal. Non Linéaire, 34 (2017), 157-196.  doi: 10.1016/j.anihpc.2015.11.001.  Google Scholar

[11]

A. ComechM. Guan and S. Gustafson, On linear instability of solitary waves for the nonlinear Dirac equation, Ann. Inst. H. Poincare Anal. Non Linéaire, 31 (2014), 639-654.  doi: 10.1016/j.anihpc.2013.06.001.  Google Scholar

[12]

J. Cuevas-MaraverP. G. KevrekidisA. SaxenaF. CooperA. KhareA. Comech and C. M. Bender, Solitary waves of a $ \mathcal{PT}$-symmetric nonlinear Dirac equation, IEEE Journal of Selected Topics in Quantum Electronics, 22 (2016), 1-9.   Google Scholar

[13]

J. Cuevas-MaraverP. G. KevrekidisA. SaxenaA. Comech and R. Lan, Stability of solitary waves and vortices in a 2D nonlinear Dirac model, Phys. Rev. Lett., 116 (2016), 214101.  doi: 10.1103/PhysRevLett.116.214101.  Google Scholar

[14]

T. DurtD. KaszlikowskiJ.-L. Chen and L. C. Kwek, Security of quantum key distributions with entangled qudits, Phys. Rev. A, 69 (2004), 032313.  doi: 10.1103/PhysRevA.69.032313.  Google Scholar

[15]

B. J. EggletonC. M. De Sterke and R. E. Slusher, Nonlinear pulse propagation in Bragg gratings, J. Opt. Soc. Am. B, 14 (1997), 2980-2993.   Google Scholar

[16]

A. Galindo, A remarkable invariance of classical Dirac Lagrangians, Lett. Nuovo Cimento (2), 20 (1977), 210-212.  doi: 10.1007/BF02785129.  Google Scholar

[17]

D. J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D, 10 (1974), 3235-3253.   Google Scholar

[18]

D. D. Ivanenko, Notes to the theory of interaction via particles, Zh. Éksp. Teor. Fiz, 8 (1938), 260-266.   Google Scholar

[19]

M. KuesC. ReimerP. RoztockiL. R. CortS. SciaraB. WetzelY. ZhangA. CinoS. T. ChuB. E. LittleD. J. MossL. CaspaniJ. Aza and R. Morandotti, On-chip generation of high-dimensional entangled quantum states and their coherent control, Nature, 546 (2017), 622-626.  doi: 10.1038/nature22986.  Google Scholar

[20]

N. Lazarides and G. P. Tsironis, Gain-driven discrete breathers in $\mathcal{P}\mathcal{T}$-symmetric nonlinear metamaterials, Phys. Rev. Lett., 110 (2013), 053901.  doi: 10.1103/PhysRevLett.110.053901.  Google Scholar

[21]

S. Y. Lee and A. Gavrielides, Quantization of the localized solutions in two-dimensional field theories of massive fermions, Phys. Rev. D, 12 (1975), 3880-3886.   Google Scholar

[22]

A. MariniS. Longhi and F. Biancalana, Optical simulation of neutrino oscillations in binary waveguide arrays, Phys. Rev. Lett., 113 (2014), 150401.  doi: 10.1103/PhysRevLett.113.150401.  Google Scholar

[23]

A. A. Melnikov and L. E. Fedichkin, Quantum walks of interacting fermions on a cycle graph, Sci. Rep., 6 (2016), 34226.  doi: 10.1038/srep34226.  Google Scholar

[24]

R. MorandottiD. MandelikY. SilberbergJ. S. AitchisonM. SorelD. N. ChristodoulidesA. A. Sukhorukov and Y. S. Kivshar, Observation of discrete gap solitons in binary waveguide arrays, Opt. Lett., 29 (2004), 2890-2892.   Google Scholar

[25]

T. Ozawa and K. Yamauchi, Structure of Dirac matrices and invariants for nonlinear Dirac equations, Differential Integral Equations, 17 (2004), 971-982.   Google Scholar

[26]

D. E. Pelinovsky and A. Stefanov, Asymptotic stability of small gap solitons in nonlinear Dirac equations, J. Math. Phys., 53 (2012), 073705, 27.  doi: 10.1063/1.4731477.  Google Scholar

[27]

J. SchindlerZ. LinJ. M. LeeH. RamezaniF. M. Ellis and T. Kottos, $\mathcal{PT}$-symmetric electronics, Journal of Physics A: Mathematical and Theoretical, 45 (2012), 444029.   Google Scholar

[28]

J. SchindlerA. LiM. C. ZhengF. M. Ellis and T. Kottos, Experimental study of active LRC circuits with $\mathcal{PT}$ symmetries, Phys. Rev. A, 84 (2011), 040101.  doi: 10.1103/PhysRevA.84.040101.  Google Scholar

[29]

M. Soler, Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D, 1 (1970), 2766-2769.   Google Scholar

[30]

W. E. Thirring, A soluble relativistic field theory, Ann. Physics, 3 (1958), 91-112.  doi: 10.1016/0003-4916(58)90015-0.  Google Scholar

[31]

M. Wakano, Intensely localized solutions of the classical Dirac-Maxwell field equations, Progr. Theoret. Phys., 35 (1966), 1117-1141.   Google Scholar

[1]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[2]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[3]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[4]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[5]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[6]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[7]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[8]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[9]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[10]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[11]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[12]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[13]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[14]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[15]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[16]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[17]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[18]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[19]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[20]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (101)
  • HTML views (175)
  • Cited by (2)

Other articles
by authors

[Back to Top]