\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Focusing nlkg equation with singular potential

  • * Corresponding author: Sandra Lucente

    * Corresponding author: Sandra Lucente 
The first author was supported by University of Pisa, project no. PRA-2016-41"Fenomeni singolari in problemi deterministici e stocastici ed applicazioni"; by the Contract FIRB" Dinamiche Dispersive: Analisi di Fourier e Metodi Variazionali", 2012; by INDAM, GNAMPA -Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni; by Institute of Mathematics and Informatics, Bulgarian Academy of Sciences; by Top Global University Project, Waseda University. The second author was supported in part by Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) Progetto 2017 Equazioni di tipo dispersivo e proprietà asintotiche.
Abstract Full Text(HTML) Related Papers Cited by
  • We study the dynamics for the focusing nonlinear Klein Gordon equation with a positive, singular, radial potential and initial data in energy space. More precisely, we deal with

    $u_{tt}-Δ u+m^2 u=|x|^{-a}|u|^{p-1}u$

    with $0 < a < 2$. In dimension $d≥3$, we establish the existence and uniqueness of the ground state solution that enables us to define a threshold size for the initial data that separates global existence and blow-up. We find a critical exponent depending on $a$. We establish a global existence result for subcritical exponents and subcritical energy data. For subcritical exponents and critical energy some solutions blow-up, other solutions exist for all time due to the decomposition of the energy space of the initial data into two complementary sets.

    Mathematics Subject Classification: Primary: 35L70; Secondary: 47J30, 35A01, 35B44.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] V. Combet and F. Genoud, Classification of minimal mass blow-up solutions for an L2 critical inhomogeneous NLS, J-Evol. Eq., 16 (2016), 483-500. 
    [2] Z. Gan and J. Zhang, Standing waves of the inhomogeneous Klein-Gordon equations with critical exponent, Acta Math. Sin. (Engl. Ser.), 22 (2006), 357-366. 
    [3] Z. Gan and J. Zhang, Cross-constrained variational problem and the non-linear Klein-Gordon equations, Glasg. Math. J., 50 (2008), 467-481. 
    [4] V. Georgiev and S. Lucente, Breaking Symmetry in focusing NLKG with potential, submitted
    [5] S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460. Errata arXiv: 1506.06248.
    [6] S. IbrahimN. Masmoudi and K. Nakanishi, Threshold solutions in the case of mass-shift for the critical Klein-Gordon equation, Transactions of the American Mathematical Society, 366 (2014), 5653-5669. 
    [7] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-upup for the energycritical focusing non-linear wave equation, Acta Mathematica, 201 (2008), 147-212. 
    [8] E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics 14, 2nd edition, AMS, 2001.
    [9] L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303. 
    [10] W. A. Strauss, Existence of solitary waves in higher dimension, Comm. Math. Phys., 55 (1977), 149-162. 
    [11] J. SuZ. Q. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials, J. Differ. Equ., 238 (2007), 201-219. 
    [12] E. Yanagida, Uniqueness of positive radial solutions of ∆u+g(r)u+h(r)up = 0 in ${{\mathbb{R}}^{n}}$, Arch. Rational Mech. Anal., 155 (1991), 257-274. 
    [13] J. Zhang, Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations, Nonlinear Anal. Ser. A: Theory Methods, 48 (2002), 191-207. 
  • 加载中
SHARE

Article Metrics

HTML views(613) PDF downloads(387) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return