July  2018, 17(4): 1511-1560. doi: 10.3934/cpaa.2018073

Dynamical behavior for the solutions of the Navier-Stokes equation

1. 

LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China

2. 

Department of Applied Physics, Waseda University, Tokyo 169-8555, Japan

* Corresponding author: Baoxiang Wang

Received  August 2016 Revised  April 2017 Published  April 2018

We study several quantitative properties of solutions to the incompressible Navier-Stokes equation in three and higher dimensions:
$ \begin{align} u_t -Δ u+u· \nabla u +\nabla p = 0, \ \ {\rm div} u = 0, \ \ u(0, x) = u_0(x). \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 1 \right)\label{NSa} \end{align}$
More precisely, for the blow up mild solutions with initial data in
$L^{∞}(\mathbb{R}^d)$
and
$H^{d/2 -1}(\mathbb{R}^d)$
, we obtain a concentration phenomenon and blowup profile decomposition respectively. On the other hand, if the Fourier support has the form
${\rm supp} \ \widehat{u_0} \subset \{ξ∈ \mathbb{R}^n: ξ_1≥ L \}$
and
$ \|u_0\|_{∞} \ll L$
for some
$L >0$
, then (1) has a unique global solution
$u∈ C(\mathbb{R}_+, L^∞)$
. In 3D, we show the compactness of the set consisting of minimal-
$L^p$
singularity-generating initial data with
$3<p< ∞$
, furthermore, if the mild solution with data in
$L^p({{\mathbb{R}}^{3}})$
blows up in a Type-Ⅰ manner, we prove the existence of a blowup solution which is uniformly bounded in critical Besov spaces
$\dot B^{-1+6/p}_{p/2, ∞}({{\mathbb{R}}^{3}})$
.
Citation: Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073
References:
[1]

B. Abe, The Navier-Stokes equations in a space of bounded functions, Commun. Math. Phys., 338 (2015), 849-865.   Google Scholar

[2]

D. Albritton, Blow-up criteria for the Navier-Stokes equations in non-endpoint critical Besov spaces, preprint, arXiv: 1612.04439. Google Scholar

[3]

P. AuscherS. Dubois and P. Tchamitchian, On the stability of global solutions to Navier-Stokes equations in the space, J. Math. Pures Appl., 83 (2004), 673-697.   Google Scholar

[4]

H. BaeA. Biswas and E. Tadmor, Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Rational Mech. Anal., 205 (2012), 963-991.   Google Scholar

[5]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer, Heidelberg, 2011. Google Scholar

[6]

T. Barker, Uniqueness results for weak Leray-Hopf solutions of the Navier-Stokes system with initial values in critical spaces, J. Math. Fluid Mech., 20 (2018), 133-160.   Google Scholar

[7]

T. Barker and G. Seregin, On global solutions to the Navier-Stokes system with large $L^{3, ∞}$ initial data, preprint, arXiv: 1603.03211. Google Scholar

[8]

J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, 1976. Google Scholar

[9]

J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999), 145-171.   Google Scholar

[10]

J. Bourgain and N. Pavlovic, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233-2247.   Google Scholar

[11]

L. CaffarelliR. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.   Google Scholar

[12]

C. P. Calderón, Existence of weak solutions for the Navier-Stokes equations with initial data in $L^p$, Trans. Amer. Math. Soc., 318 (1990), 179-200.   Google Scholar

[13]

M. Cannone, Ondelettes, Paraproduits et Navier-Stokes, (French) [Wavelets, Paraproducts and Navier-Stokes], Diderot Editeur, Paris, 1995. Google Scholar

[14]

M. Cannone and Y. Meyer, Littlewood-Paley decomposition and Navier-Stokes equations, Methods Appl. Anal., 2 (1995), 307-319.   Google Scholar

[15]

M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoamericana, 13 (1997), 515-541.   Google Scholar

[16]

J.-Y. Chemin, Théorémes d'unicité pour le systéme de Navier-Stokes tridimensionnel, J. Anal. Math., 77 (1999), 27-50.   Google Scholar

[17]

J.-Y. CheminI. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations, Ann. of Math., 173 (2011), 983-1012.   Google Scholar

[18]

J. C. Cortissoz, J. A. Montero and C. E. Pinilla, On lower bounds for possible blow-up solutions to the periodic Navier-Stokes equation, J. Math. Phys. , 55 (2014), 033101. Google Scholar

[19]

H. Dong and D. Du, The Navier-Stokes equation in the critical Lebesgue space, Commun. Math. Phys., 292 (2009), 811-827.   Google Scholar

[20]

L. EscauriazaG. Seregin and V. Sverak, $L_{3,∞}$ solutions of Navier-Stokes equations and backward uniquness, Uspekhi Mat. Nauk., 58 (2003), 3-44.   Google Scholar

[21]

C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369.   Google Scholar

[22]

I. Gallagher, Profile decomposition for solutions of the Navier-Stokes equations, Bull. Soc. Math. France, 129 (2001), 285-316.   Google Scholar

[23]

I. GallagherD. Iftimie and F. Planchon, Asympototics and stability for global solutions to the Navier-Stokes equations, Ann. Inst. Fourier(Grenoble), 53 (2003), 1387-1424.   Google Scholar

[24]

I. GallagherG. S. Koch and F. Planchnon, A profile decomposition approach to the $L^∞_t(L^3_x)$ Navier-Stokes regularity criterion, Math. Ann., 355 (2013), 1527-1559.   Google Scholar

[25]

I. GallagherG. S. Koch and F. Planchon, Blow-up of critical Besov norms at a potential Navier-Stokes singularity, Comm. Math. Phys., 343 (2016), 39-82.   Google Scholar

[26]

P. Germain, The second iterate for the Navier-Stokes equation, J. Funct. Anal., 255 (2008), 2248-2264.   Google Scholar

[27]

P. Gérard, Description du défaut de compacité de l'injection de Sobolev, ESAIM Control Optim. Calc. Var., 3 (1998), 213-233.   Google Scholar

[28]

Y. Giga, Solutions for semilinear parabolic equations in $L_p$ and regularity of weak solutions of the Navier-Stokes system, J. Differ. Equations, 62 (1986), 182-212.   Google Scholar

[29]

Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data, in Advances in Fluid Dynamics, vol. 4 of Quad. Mat., pp. 27–68. Dept. Math., Seconda Univ. Napoli, Caserta (1999). Google Scholar

[30]

Y. Giga and T. Miyakawa, Solutions in $L^r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.   Google Scholar

[31]

Y. Giga and T. Miyakawa, Navier-Stokes flow in $\mathbb{R}^3$ with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations, 14 (1989), 577-618.   Google Scholar

[32]

C. Huang and B. Wang, Analyticity for the (generalized) Navier-Stokes equations with rough initial data, preprint, arXiv: 1310.2141. Google Scholar

[33]

T. Iwabuchi, Navier-Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices, J. Differential Equations, 248 (2010), 1972-2002.   Google Scholar

[34]

H. Jia and V. Sverak, Minimal $L_3$ -initial data for potential Navier-Stokes singularities, SIAM J. Math. Anal., 45 (2013), 1448-1459.   Google Scholar

[35]

T. Kato, Strong $L^p$ solutions of the Navier-Stokes equations in $ \mathbb{{R}}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.   Google Scholar

[36]

C. E. Kenig and G. S. Koch, An alternative approach to regularity for the Navier-Stokes equations in critical spaces, Ann. l'Inst. H. Poincare (C) Non Linear Anal., 28 (2011), 159-187.   Google Scholar

[37]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical focusing nonlinear wave equations, Acta Math., 201 (2008), 147-212.   Google Scholar

[38]

G. S. Koch, Profile decompositions for critical Lebesgue and Besov space embeddings, Indiana Univ. Math.J., 59 (2010), 1801-1830.   Google Scholar

[39]

G. S. KochN. NadirashviliG. A. Seregin and V. Sverak, Liouville theorems for the Navier-Stokes equations and applications, Acta Math., 203 (2009), 83-105.   Google Scholar

[40]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.   Google Scholar

[41]

H. KozonoT. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278.   Google Scholar

[42]

O. A. Ladyzhenskaya and G. A. Seregin, On partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier-Stokes equations, J. Math. Fluid Mech., 1 (1999), 365-387.   Google Scholar

[43]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.   Google Scholar

[44]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002. Google Scholar

[45]

P. G. Lemarié-Rieusset, The Navier-Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL, 2016. Google Scholar

[46]

F. H. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998), 241-257.   Google Scholar

[47]

F. Planchon, Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbb{R}^3$, Ann, Inst. H. Poincare, AN, 13 (1996), 319-336.   Google Scholar

[48]

F. Planchon, Asymptotic behavior of global solutions to the Navier-Stokes equations in ${{\mathbb{R}}^{3}}$, Rev. Mat. Iberoamericana, 14 (1998), 71-93.   Google Scholar

[49]

G. PonceR. RackeT. C. Sideris and E. S. Titi, Global stability of large solutions to the 3D Navier-Stokes equations, Comm. Math. Phys., 159 (1994), 329-341.   Google Scholar

[50]

E. Poulon, About the possibility of minimal blow up for Navier-Stokes solutions with data in $\dot{H}^s(\mathbb{R}^3)$, preprint, arXiv: 1505.06197. Google Scholar

[51]

E. Poulon, Etude Qualitative d'Eventuelles Singularités dans les Equation de Navier-Stokes Tridimensionnelles pour un Fluide Visqueux, Ph. D thesis, Université Pierre et Marie Curie, 2015. Google Scholar

[52]

J. C. RobinsonW. Sadowski and R. P. Silva, Lower bounds on blow up solutions of the three dimensional Navier-Stokes equations in homogeneous Sobolev spaces, Journal of Mathematical Physics, 260 (2011), 879-891.   Google Scholar

[53]

W. Rusin and V. Sverak, Minimal initial data for potential Navier-Stokes singularities, J. Funct. Anal., 260 (2011), 879-891.   Google Scholar

[54]

G. Seregin, A certain necessary condition of potential blow up for Navier-Stokes equations, Comm. Math. Phys., 312 (2012), 833-845.   Google Scholar

[55]

G. Seregin and V. Sverak, On global weak solutions to the Cauchy problem ˇ for the Navier-Stokes equations with large $L_3$-initial data, Nonlinear Analysis, Theory, Methods and Applications, 154 (2017), 269-296.   Google Scholar

[56]

G. Seregin, Necessary conditions of potential blow up for the Navier-Stokes equations, Zap. Nauchn. Sem. POMI, 385 (2010), 187-199.   Google Scholar

[57]

G. Seregin, Lecture Notes on Regularity Theory for the Navier-Stokes Equations World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. Google Scholar

[58]

H. Triebel, Theory of Function Spaces, Birkhäuser–Verlag, 1983. Google Scholar

[59]

B. Wang, Exponential Besov spaces and their applications to certain evolution equations with dissipations, Commun. Pure Appl. Anal., 3 (2004), 883-919.   Google Scholar

[60]

B. Wang, Z. Huo, C. Hao and Z. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations. I, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. Google Scholar

[61]

B. WangL. Zhao and B. Guo, Isometric decomposition operators, function spaces $E^λ_{p, q}$ and their applications to nonlinear evolution equations, J. Funct. Anal., 233 (2006), 1-39.   Google Scholar

[62]

B. Wang, Ill-posedness for the Navier-Stokes equation in critical Besov spaces $\dot B^{-1}_{∞, q}$, Adv. in Math., 268 (2015), 350-372.   Google Scholar

[63]

F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Rational Mech. Anal., 74 (1980), 219-230.   Google Scholar

[64]

T. Yoneda, Ill-posedness of the 3D Navier-Stokes equations in a generalized Besov space near $BMO^{-1}$, J. Funct. Anal., 258 (2010), 3376-3387.   Google Scholar

show all references

References:
[1]

B. Abe, The Navier-Stokes equations in a space of bounded functions, Commun. Math. Phys., 338 (2015), 849-865.   Google Scholar

[2]

D. Albritton, Blow-up criteria for the Navier-Stokes equations in non-endpoint critical Besov spaces, preprint, arXiv: 1612.04439. Google Scholar

[3]

P. AuscherS. Dubois and P. Tchamitchian, On the stability of global solutions to Navier-Stokes equations in the space, J. Math. Pures Appl., 83 (2004), 673-697.   Google Scholar

[4]

H. BaeA. Biswas and E. Tadmor, Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Rational Mech. Anal., 205 (2012), 963-991.   Google Scholar

[5]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer, Heidelberg, 2011. Google Scholar

[6]

T. Barker, Uniqueness results for weak Leray-Hopf solutions of the Navier-Stokes system with initial values in critical spaces, J. Math. Fluid Mech., 20 (2018), 133-160.   Google Scholar

[7]

T. Barker and G. Seregin, On global solutions to the Navier-Stokes system with large $L^{3, ∞}$ initial data, preprint, arXiv: 1603.03211. Google Scholar

[8]

J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, 1976. Google Scholar

[9]

J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999), 145-171.   Google Scholar

[10]

J. Bourgain and N. Pavlovic, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233-2247.   Google Scholar

[11]

L. CaffarelliR. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.   Google Scholar

[12]

C. P. Calderón, Existence of weak solutions for the Navier-Stokes equations with initial data in $L^p$, Trans. Amer. Math. Soc., 318 (1990), 179-200.   Google Scholar

[13]

M. Cannone, Ondelettes, Paraproduits et Navier-Stokes, (French) [Wavelets, Paraproducts and Navier-Stokes], Diderot Editeur, Paris, 1995. Google Scholar

[14]

M. Cannone and Y. Meyer, Littlewood-Paley decomposition and Navier-Stokes equations, Methods Appl. Anal., 2 (1995), 307-319.   Google Scholar

[15]

M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoamericana, 13 (1997), 515-541.   Google Scholar

[16]

J.-Y. Chemin, Théorémes d'unicité pour le systéme de Navier-Stokes tridimensionnel, J. Anal. Math., 77 (1999), 27-50.   Google Scholar

[17]

J.-Y. CheminI. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations, Ann. of Math., 173 (2011), 983-1012.   Google Scholar

[18]

J. C. Cortissoz, J. A. Montero and C. E. Pinilla, On lower bounds for possible blow-up solutions to the periodic Navier-Stokes equation, J. Math. Phys. , 55 (2014), 033101. Google Scholar

[19]

H. Dong and D. Du, The Navier-Stokes equation in the critical Lebesgue space, Commun. Math. Phys., 292 (2009), 811-827.   Google Scholar

[20]

L. EscauriazaG. Seregin and V. Sverak, $L_{3,∞}$ solutions of Navier-Stokes equations and backward uniquness, Uspekhi Mat. Nauk., 58 (2003), 3-44.   Google Scholar

[21]

C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369.   Google Scholar

[22]

I. Gallagher, Profile decomposition for solutions of the Navier-Stokes equations, Bull. Soc. Math. France, 129 (2001), 285-316.   Google Scholar

[23]

I. GallagherD. Iftimie and F. Planchon, Asympototics and stability for global solutions to the Navier-Stokes equations, Ann. Inst. Fourier(Grenoble), 53 (2003), 1387-1424.   Google Scholar

[24]

I. GallagherG. S. Koch and F. Planchnon, A profile decomposition approach to the $L^∞_t(L^3_x)$ Navier-Stokes regularity criterion, Math. Ann., 355 (2013), 1527-1559.   Google Scholar

[25]

I. GallagherG. S. Koch and F. Planchon, Blow-up of critical Besov norms at a potential Navier-Stokes singularity, Comm. Math. Phys., 343 (2016), 39-82.   Google Scholar

[26]

P. Germain, The second iterate for the Navier-Stokes equation, J. Funct. Anal., 255 (2008), 2248-2264.   Google Scholar

[27]

P. Gérard, Description du défaut de compacité de l'injection de Sobolev, ESAIM Control Optim. Calc. Var., 3 (1998), 213-233.   Google Scholar

[28]

Y. Giga, Solutions for semilinear parabolic equations in $L_p$ and regularity of weak solutions of the Navier-Stokes system, J. Differ. Equations, 62 (1986), 182-212.   Google Scholar

[29]

Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data, in Advances in Fluid Dynamics, vol. 4 of Quad. Mat., pp. 27–68. Dept. Math., Seconda Univ. Napoli, Caserta (1999). Google Scholar

[30]

Y. Giga and T. Miyakawa, Solutions in $L^r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.   Google Scholar

[31]

Y. Giga and T. Miyakawa, Navier-Stokes flow in $\mathbb{R}^3$ with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations, 14 (1989), 577-618.   Google Scholar

[32]

C. Huang and B. Wang, Analyticity for the (generalized) Navier-Stokes equations with rough initial data, preprint, arXiv: 1310.2141. Google Scholar

[33]

T. Iwabuchi, Navier-Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices, J. Differential Equations, 248 (2010), 1972-2002.   Google Scholar

[34]

H. Jia and V. Sverak, Minimal $L_3$ -initial data for potential Navier-Stokes singularities, SIAM J. Math. Anal., 45 (2013), 1448-1459.   Google Scholar

[35]

T. Kato, Strong $L^p$ solutions of the Navier-Stokes equations in $ \mathbb{{R}}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.   Google Scholar

[36]

C. E. Kenig and G. S. Koch, An alternative approach to regularity for the Navier-Stokes equations in critical spaces, Ann. l'Inst. H. Poincare (C) Non Linear Anal., 28 (2011), 159-187.   Google Scholar

[37]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical focusing nonlinear wave equations, Acta Math., 201 (2008), 147-212.   Google Scholar

[38]

G. S. Koch, Profile decompositions for critical Lebesgue and Besov space embeddings, Indiana Univ. Math.J., 59 (2010), 1801-1830.   Google Scholar

[39]

G. S. KochN. NadirashviliG. A. Seregin and V. Sverak, Liouville theorems for the Navier-Stokes equations and applications, Acta Math., 203 (2009), 83-105.   Google Scholar

[40]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.   Google Scholar

[41]

H. KozonoT. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278.   Google Scholar

[42]

O. A. Ladyzhenskaya and G. A. Seregin, On partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier-Stokes equations, J. Math. Fluid Mech., 1 (1999), 365-387.   Google Scholar

[43]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.   Google Scholar

[44]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002. Google Scholar

[45]

P. G. Lemarié-Rieusset, The Navier-Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL, 2016. Google Scholar

[46]

F. H. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998), 241-257.   Google Scholar

[47]

F. Planchon, Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbb{R}^3$, Ann, Inst. H. Poincare, AN, 13 (1996), 319-336.   Google Scholar

[48]

F. Planchon, Asymptotic behavior of global solutions to the Navier-Stokes equations in ${{\mathbb{R}}^{3}}$, Rev. Mat. Iberoamericana, 14 (1998), 71-93.   Google Scholar

[49]

G. PonceR. RackeT. C. Sideris and E. S. Titi, Global stability of large solutions to the 3D Navier-Stokes equations, Comm. Math. Phys., 159 (1994), 329-341.   Google Scholar

[50]

E. Poulon, About the possibility of minimal blow up for Navier-Stokes solutions with data in $\dot{H}^s(\mathbb{R}^3)$, preprint, arXiv: 1505.06197. Google Scholar

[51]

E. Poulon, Etude Qualitative d'Eventuelles Singularités dans les Equation de Navier-Stokes Tridimensionnelles pour un Fluide Visqueux, Ph. D thesis, Université Pierre et Marie Curie, 2015. Google Scholar

[52]

J. C. RobinsonW. Sadowski and R. P. Silva, Lower bounds on blow up solutions of the three dimensional Navier-Stokes equations in homogeneous Sobolev spaces, Journal of Mathematical Physics, 260 (2011), 879-891.   Google Scholar

[53]

W. Rusin and V. Sverak, Minimal initial data for potential Navier-Stokes singularities, J. Funct. Anal., 260 (2011), 879-891.   Google Scholar

[54]

G. Seregin, A certain necessary condition of potential blow up for Navier-Stokes equations, Comm. Math. Phys., 312 (2012), 833-845.   Google Scholar

[55]

G. Seregin and V. Sverak, On global weak solutions to the Cauchy problem ˇ for the Navier-Stokes equations with large $L_3$-initial data, Nonlinear Analysis, Theory, Methods and Applications, 154 (2017), 269-296.   Google Scholar

[56]

G. Seregin, Necessary conditions of potential blow up for the Navier-Stokes equations, Zap. Nauchn. Sem. POMI, 385 (2010), 187-199.   Google Scholar

[57]

G. Seregin, Lecture Notes on Regularity Theory for the Navier-Stokes Equations World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. Google Scholar

[58]

H. Triebel, Theory of Function Spaces, Birkhäuser–Verlag, 1983. Google Scholar

[59]

B. Wang, Exponential Besov spaces and their applications to certain evolution equations with dissipations, Commun. Pure Appl. Anal., 3 (2004), 883-919.   Google Scholar

[60]

B. Wang, Z. Huo, C. Hao and Z. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations. I, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. Google Scholar

[61]

B. WangL. Zhao and B. Guo, Isometric decomposition operators, function spaces $E^λ_{p, q}$ and their applications to nonlinear evolution equations, J. Funct. Anal., 233 (2006), 1-39.   Google Scholar

[62]

B. Wang, Ill-posedness for the Navier-Stokes equation in critical Besov spaces $\dot B^{-1}_{∞, q}$, Adv. in Math., 268 (2015), 350-372.   Google Scholar

[63]

F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Rational Mech. Anal., 74 (1980), 219-230.   Google Scholar

[64]

T. Yoneda, Ill-posedness of the 3D Navier-Stokes equations in a generalized Besov space near $BMO^{-1}$, J. Funct. Anal., 258 (2010), 3376-3387.   Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[4]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[5]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[6]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[7]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[8]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[9]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[10]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[11]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[14]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[15]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[16]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[17]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[18]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[19]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[20]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (120)
  • HTML views (268)
  • Cited by (3)

Other articles
by authors

[Back to Top]