\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On special regularity properties of solutions of the Zakharov-Kuznetsov equation

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We study special regularity properties of solutions to the initial value problem associated to the Zakharov-Kuznetsov equation in three dimensions. We show that the initial regularity of the data in a family of half-spaces propagates with infinite speed. By dealing with the finite envelope of a class of these half-spaces we extend the result to the complement of a family of cones in $\mathbb{R}^3$.

    Mathematics Subject Classification: Primary: 35Q53; Secondary: 35B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Biagioni and F. Linares, Well-posedness results for the modified Zakharov-Kuznetsov equation, Progr. Nonlinear Diff. Eqs Appl., 54 (2003), 181-189. 
    [2] J.L. Bona and R. Smith, The initial value problem for the Korteweg-de Vries equation, Roy. Soc. London Ser A, 278 (1978), 555-601. 
    [3] E. BustamanteP. Isaza and J. Mejia, On the support of solutions to the Zakharov-Kuznetsov equation, J. Diff. Eqs, 251 (2011), 2728-2736. 
    [4] E. BustamanteP. Isaza and J. Mejia, On uniqueness properties of solutions of the Zakharov-Kuznetsov equation, J. Funct. Anal., 264 (2013), 2529-2549. 
    [5] A. de Bouard, Stability and instability of some nonlinear dispersive solitary waves in higher dimension, Proc. R. Soc. Edinburgh, 126 (1996), 89-112. 
    [6] R. CȏteC. MuñozD. Pilod and G. Simpson, Asymptotic stability of high-dimensional Zakharov-Kuznetsov solitons, Arch. Rat. Mech. Anal., 220 (2016), 639-710. 
    [7] A.V. Faminskii, The Cauchy problem for the Zakharov-Kuznetsov equation, Diff. Eqs, 31 (1995), 1002-1012. 
    [8] L.G. FarahF. Linares and A. Pastor, A note on the 2D generalized Zakharov-Kuznetsov equation: local, global and scattering results, J. Diff. Eqs, 253 (2011), 2558-2571. 
    [9] A. Grünrock, A remark on the modified Zakharov-Kuznetsov equation in three space dimensions, Math. Res. Lett., 21 (2014), 127-131. 
    [10] A. Grünrock, On the generalized Zakharov-Kuznetsov equation at critical regularity, preprint, arXiv: 1509.09146.
    [11] A. Grünrock and S. Herr, The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Disc. Contin. Dyn. Syst. Ser. A, 34 (2014), 2061-2068. 
    [12] D. Han-Kwan, From Vlasov-Poisson to Korteweg-de Vries and Zakharov-Kuznetsov, Comm. Math. Phys., 324 (2013), 961-993. 
    [13] P. IsazaF. Linares and G. Ponce, On the propagation of regularity of solutions of the Kadomtsev-Petviashvili equation, SIAM J. Math. Anal., 48 (2016), 1006-1024. 
    [14] P. IsazaF. Linares and G. Ponce, On the propagation of regularities in solutions of the Benjamin-Ono equation, J. Funct. Anal., 270 (2016), 976-1000. 
    [15] P. IsazaF. Linares and G. Ponce, On the propagation of regularity and decay of solutions to the k-generalized Korteweg-de Vries equation, Comm. Partial Diff. Eqs., 40 (2015), 1336-1364. 
    [16] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Mathematics Supplementary Studies, Studies in Applied Math., 8 (1983), 93-128. 
    [17] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. 
    [18] C.E. Kenig, On the local and global well-posedness theory for the KP-I equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 827-838. 
    [19] C.E. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347. 
    [20] C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana U. Math. J. , 40 (1991), 33-69.
    [21] D. LannesF. Linares and J.-C. Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, Prog. Nonlinear Diff. Eqs Appl., 84 (2013), 181-213. 
    [22] F. Linares and A. Pastor, Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 41 (2009), 1323-1339. 
    [23] F. Linares and A. Pastor, Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov Equation, J. Funct. Anal., 260 (2011), 1060-1085. 
    [24] F. LinaresA. Pastor and J.-C. Saut, Well-posedness for the ZK equation in a cylinder and on the background of a KdV soliton, Comm. Partial Diff. Eqs, 35 (2010), 1674-1689. 
    [25] F. Linares and J.-C. Saut, The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Disc. Contin. Dyn. Syst., 24 (2009), 547-565. 
    [26] L. Molinet and D. Pilod, Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 347-371. 
    [27] M. Panthee, A note on the unique continuation property for Zakharov-Kuznetsov equation, Nonlinear Anal., 59 (2004), 425-438. 
    [28] F. Ribaud and S. Vento, Well-posedness results for the 3D Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 44 (2012), 2289-2304. 
    [29] F. Ribaud and S. Vento, A note on the Cauchy problem for the 2D generalized Zakharov-Kuznetsov equations, C. R. Acad. Sci. Paris, 350 (2012), 499-503. 
    [30] V.E. Zakharov and E.A. Kuznetsov, On three dimensional solitons, Sov. Phys. JETP., 39 (1974), 285-286. 
  • 加载中
SHARE

Article Metrics

HTML views(1600) PDF downloads(337) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return