In this paper, we consider the final state problem for the nonlinear Klein-Gordon equation (NLKG) with a critical nonlinearity in three space dimensions: $(\Box+1)u = λ|u|^{2/3}u$, $t∈\mathbb{R}$, $x∈\mathbb{R}^{3}$, where $\Box = \partial_{t}^{2}-Δ$ is d'Alembertian. We prove that for a given asymptotic profile $u_{\mathrm{ap}}$, there exists a solution $u$ to (NLKG) which converges to $u_{\mathrm{ap}}$ as $t\to∞$. Here the asymptotic profile $u_{\mathrm{ap}}$ is given by the leading term of the solution to the linear Klein-Gordon equation with a logarithmic phase correction. Construction of a suitable approximate solution is based on the combination of Fourier series expansion for the nonlinearity used in our previous paper [
Citation: |
[1] |
J-M. Delort, Existence globale et comportement asymptotique pour l'equation de KleinGordon quasi linéaire à données petites en dimension 1. (French), Ann. Sci. l'Ecole Norm. Sup., 34 (2001), 1-61.
![]() |
[2] |
J-M. Delort, D. Fang and R. Xue, Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions, J. Funct. Anal., 211 (2004), 288-323.
![]() |
[3] |
V. Georgiev, Decay estimates for the Klein-Gordon equation, Comm. Part. Diff. Eq., 17 (1992), 1111-1139.
![]() |
[4] |
V. Georgiev and S. Lecente, Weighted Sobolev spaces applied to nonlinear Klein-Gordon equation, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 21-26.
![]() |
[5] |
V. Georgiev and B. Yardanov, Asymptotic behavior of the one dimensional Klein-Gordon equation with a cubic nonlinearity, preprint, (1996).
![]() |
[6] |
J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension n ≥ 2, Comm. Math. Phys., 151 (1993), 619-645.
![]() |
[7] |
R. T. Glassey, On the asymptotic behavior of nonlinear wave equations, Trans. Amer. Math. Soc., 182 (1973), 187-200.
![]() |
[8] |
N. Hayashi and P. I. Naumkin, The initial value problem for the cubic nonlinear Klein-Gordon equation, Z. Angew. Math. Phys., 59 (2008), 1002-1028.
![]() |
[9] |
N. Hayashi and P. I. Naumkin, Scattering operator for nonlinear Klein-Gordon equations in higher space dimensions, J. Differential Equations, 244 (2008), 188-199.
![]() |
[10] |
N. Hayashi and P. I. Naumkin, Final state problem for the cubic nonlinear Klein-Gordon equation, J. Math. Phys., 50 (2009), 103511-14 pp.
![]() |
[11] |
N. Hayashi and P. I. Naumkin, Scattering operator for nonlinear Klein-Gordon equations, Commun. Contemp. Math., 11 (2009), 771-781.
![]() |
[12] |
L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, in: Mathématiques et Applications, 26, Springer, Berlin, 1997.
![]() |
[13] |
S. Katayama, A note on global existence of solutions to nonlinear Klein-Gordon equations in one space dimension, J. Math. Kyoto Univ., 39 (1999), 203-213.
![]() |
[14] |
S. Katayama, T. Ozawa and H. Sunagawa, A note on the null condition for quadratic nonlinear Klein-Gordon systems in two space dimensions, Comm. Pure Appl. Math., 65 (2012), 1285-1302.
![]() |
[15] |
Y. Kawahara and H. Sunagawa, Global small amplitude solutions for two-dimensional nonlinear Klein-Gordon systems in the presence of mass resonance, J. Differential Equations, 251 (2011), 2549-2567.
![]() |
[16] |
M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
![]() |
[17] |
S. Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math., 38 (1985), 631-641.
![]() |
[18] |
H. Lindblad and A. Soffer, A remark on long range scattering for the nonlinear Klein-Gordon equation, J. Hyperbolic Differ. Equ., 1 (2005), 77-89.
![]() |
[19] |
H. Lindblad and A. Soffer, A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation, Lett. Math. Phys., 73 (2005), 249-258.
![]() |
[20] |
B. Marshall, W. Strauss and S. Wainger, Lp-Lq estimates for the Klein-Gordon equation, J. Math. Pures Appl., 59 (1980), 417-440.
![]() |
[21] |
S. Masaki and H. Miyazaki, Long range scattering for nonlinear Schrödinger equations with critical homogeneous nonlinearity, preprint available at arXiv: 1612.04524.
![]() |
[22] |
S. Masaki, H. Miyazaki and K. Uriya, Long range scattering for nonlinear Schrödinger equations with critical homogeneous nonlinearity in three space dimension, preprint.
![]() |
[23] |
S. Masaki and J. Segata, Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg-de Vries equation, to appear in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, preprint available at arXiv: 1602.05331.
![]() |
[24] |
S. Masaki and J. Segata, Modified scattering for the quadratic nonlinear Klein-Gordon equation in two dimensions, to appear in Trans. AMS, preprint available at arXiv: 1612.00109.
![]() |
[25] |
A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations, Publ. Res. Inst. Math. Sci., 12 (1976/77), 169-189.
![]() |
[26] |
K. Moriyama, Normal forms and global existence of solutions to a class of cubic nonlinear Klein-Gordon equations in one space dimension, Differential Integral Equations, 10 (1997), 499-520.
![]() |
[27] |
K. Moriyama, S. Tonegawa and Y. Tsutsumi, Wave operators for the nonlinear Schrödinger equation with a nonlinearity of low degree in one or two space dimensions, Commun. Contemp. Math., 5 (2003), 983-996.
![]() |
[28] |
T. Ozawa, K. Tsutaya and Y. Tsutsumi, Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z., 222 (1996), 341-362.
![]() |
[29] |
H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z., 185 (1984), 261-270.
![]() |
[30] |
H. Pecher, Low energy scattering for nonlinear Klein-Gordon equations, J. Funct. Anal., 63 (1985), 101-122.
![]() |
[31] |
J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., 38 (1985), 685-696.
![]() |
[32] |
A. Shimomura and S. Tonegawa, Long-range scattering for nonlinear Schrödinger equations in one and two space dimensions, Differential Integral Equations, 17 (2004), 127-150.
![]() |
[33] |
W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110-133.
![]() |
[34] |
H. Sunagawa, Large time behavior of solutions to the Klein-Gordon equation with nonlinear dissipative terms, J. Math. Soc. Japan, 58 (2006), 379-400.
![]() |
[35] |
H. Sunagawa, Remarks on the asymptotic behavior of the cubic nonlinear Klein-Gordon equations in one space dimension, Differential Integral Equations, 18 (2005), 481-494.
![]() |
[36] |
K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys., 110 (1987), 415-426.
![]() |