[1]
|
M. Abounouh, Asymptotic behaviour for a weakly damped Schrödinger equation in dimension two, Appl. Math. Lett., 6 (1993), 29-32.
|
[2]
|
T. Ackemann and W. J. Firth, Dissipative solitons in pattern-forming nonlinear optical systems, Lecture Notes in Phys., 661 (2005), 55-100.
|
[3]
|
P. Colet, D. Gomila, A. Jacobo and M. A. Matía, Excitability mediated by dissipative solitons in nonlinear optical cavities, Lecture Notes in Phys., 751 (2008), 113-135.
|
[4]
|
E. J. Doedel and B. E. Oldeman,
AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations, Concordia University, Montreal, Canada, January 2012. Available from: http://cmvl.cs.concordia.ca/auto/.
|
[5]
|
P. Gaspard, Measurement of the instability rate of a far-from-equilibrium steady state at an infinite period bifurcation, J. Phys. Chem., 94 (1990), 1-3.
|
[6]
|
L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 236 (1978), 385-394.
|
[7]
|
J.-M. Ghidaglia, Finite dimensional behavior for weakly damped driven Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 365-405.
|
[8]
|
T. Kato,
Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966.
|
[9]
|
Y. A. Kuznetsov,
Elements of Applied Bifurcation Theory, Third edition, Springer-Verlag, New York, 2004.
|
[10]
|
P. Laurençot, Long-time behaviour for weakly damped driven nonlinear Schrödinger equations in $\mathbf{R}^N, N≤ 3$, NoDEA, 2 (1995), 357-369.
|
[11]
|
L. A. Lugiato and R. Lefever, Spatial dissipative structures in passive optical systems, Phys. Rev. Lett., 58 (1987), 2209-2211.
|
[12]
|
T. Miyaji, I. Ohnishi and Y. Tsutsumi, Bifurcation analysis to the Lugiato-Lefever equation in one space dimension, Phys. D, 239 (2010), 2066-2083.
|
[13]
|
T. Miyaji, I. Ohnishi and Y. Tsutsumi, Stability of stationary solution for the Lugiato-Lefever equation, Tohoku Math. J., 63 (2011), 651-663.
|
[14]
|
T. Ooura,
Ooura's mathematical software packages, 2006. Available from: http://www.kurims.kyoto-u.ac.jp/ooura/index.html.
|
[15]
|
J. Prüss, On the spectrum of $C_0$
-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.
|
[16]
|
A. J. Scroggie, W. J. Firth, G. S. McDonald, M. Tlidi, R. Lefever and L. A. Lugiato, Pattern formation in a passive Kerr cavity, Chaos Solitons Fractals, 4 (1994), 1323-1354.
|
[17]
|
N. Tzvetkov, Invariant measures for the nonlinear Schrodinger equation on the disc, Dynamics of PDE, 3 (2006), 111-160.
|
[18]
|
A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, Dynamics Reported New Series, 1 (1992), 125-163.
|
[19]
|
X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Phys. D, 88 (1995), 167-175.
|
[20]
|
S. Wiggins,
Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 1990.
|