The uncertainty principle of Heisenberg type can be generalized via the Boltzmann entropy functional. After reviewing the $L^p$ generalization of the logarithmic Sobolev inequality by Del Pino-Dolbeault [
Citation: |
[1] |
W. Beckner, Pitt's inequality and the uncertainty principle, Proc. Ameri. Math. Soc., 123 (1995), 1897-1905.
![]() |
[2] |
W. Beckner and M. Pearson, On sharp Sobolev embeddings and the logarithmic Sobolev inequality, Bull. London Math. Soc., 30 (1998), 80-84.
![]() |
[3] |
J.-F. Bercher, On a (β, q)-generalized Fisher information and inequalities involving q-Gaussian distributions, J. Math. Phys., 53 (2012), 82B03.
![]() |
[4] |
J.-F. Bercher, On generalized Cramér-Rao inequalities, generalized Fisher information and characterizations of generalized q-Gaussian distributions, J. Phys. A, 45 (2012), 82B30.
![]() |
[5] |
M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl., 81 (2002), 847-875.
![]() |
[6] |
M. Del Pino and J. Dolbeault, The optimal Euclidean Lp-Sobolev logarithmic inequality, J. Funct. Anal., 197 (2003), 151-161.
![]() |
[7] |
L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), 1061-1083.
![]() |
[8] |
M. Ledoux, Isoperimetry and Gaussian Analysis, Lectures on Probability Theory and Statistics (Saint-Flour 1994), Lecture Notes in Mathematics, Vol. 1648, Springer, Berlin, (1996), 165-294.
![]() |
[9] |
M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, Séminaire de Probabilités, ⅩⅩⅩⅢ, 120-216, Lecture Notes in Math., 1709, Springer, Berlin, 1999.
![]() |
[10] |
E. Lieb and M. Loss, Analysis, Second edition, Graduate Studies in Mathematics, 14, American Mathematical Society, 2001.
![]() |
[11] |
M. Kurokiba and T. Ogawa, Finite time blow up for a solution to system of the drift-diffusion equations in higher dimensions, Math. Z., 284 (2016), 231-253.
![]() |
[12] |
T. Ogawa and H. Wakui, Non-uniform and finite time blow up for solutions to a drift-diffusion equation in higher dimensions, Anal. Appl., 14 (2016), 145-183.
![]() |
[13] |
G. Rosen, Minimum value for c in the Sobolev inequality, SIAM J. Appl. Math., 21 (1971), 30-32.
![]() |
[14] |
J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J., 49 (2000), 897-923.
![]() |
[15] |
C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 379-423, 623-656.
![]() |
[16] |
C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, The University of Illinois Press, Urbana, 1949.
![]() |
[17] |
A. J. Stam, Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. Control, 2 (1959), 255-269.
![]() |
[18] |
G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.
![]() |
[19] |
F. B. Weissler, Logarithmic Sobolev inequalities for the heat-diffusion semigroup, Trans. Amer. Math. Soc., 237 (1978), 255-269.
![]() |