We study the instability of standing wave solutions for nonlinear Schrödinger equations with a one-dimensional harmonic potential in dimension $N≥2$ . We prove that if the nonlinearity is $L^2$ -critical or supercritical in dimension $N-1$ , then any ground states are strongly unstable by blowup.
Citation: |
[1] |
P. Antonelli, R. Carles and J. Drumond Silva, Scattering for nonlinear Schrödinger equation under partial harmonic confinement, Comm. Math. Phys., 334 (2015), 367-396.
![]() |
[2] |
J. Bellazzini, N. Boussaïd, L. Jeanjean and N. Visciglia, Existence and stability of standing waves for supercritical NLS with a partial confinement, Comm. Math. Phys., 353 (2017), 229-251.
![]() |
[3] |
H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris Sér. I Math., 293 (1981), 489-492.
![]() |
[4] |
H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
![]() |
[5] |
R. Carles and C. Gallo, Scattering for the nonlinear Schr¨odinger equation with a general one-dimensional confinement, J. Math. Phys., 56 (2015), 101503, 15 pp.
![]() |
[6] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes in Math., 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
![]() |
[7] |
T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.
![]() |
[8] |
R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with critical power nonlinearity and potentials, Adv. Differential Equations, 10 (2005), 259-276.
![]() |
[9] |
R. Fukuizumi and M. Ohta, Stability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations, 16 (2003), 111-128.
![]() |
[10] |
R. Fukuizumi and M. Ohta, Instability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations, 16 (2003), 691-706.
![]() |
[11] |
M. Hirose and M. Ohta, Structure of positive radial solutions to scalar field equations with harmonic potential, J. Differential Equations, 178 (2002), 519-540.
![]() |
[12] |
M. Hirose and M. Ohta, Uniqueness of positive solutions to scalar field equations with harmonic potential, Funkcial. Ekvac., 50 (2007), 67-100.
![]() |
[13] |
M. K. Kwong, Uniqueness of positive solutions of $Δ u-u+u^p = 0$ in $\mathbf{R}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.
![]() |
[14] |
S. Le Coz, A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations, Adv. Nonlinear Stud., 8 (2008), 455-463.
![]() |
[15] |
E. H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math., 74 (1983), 441-448.
![]() |
[16] |
Y. Martel, Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces, Nonlinear Anal., 28 (1997), 1903-1908.
![]() |
[17] |
M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with harmonic potential, Funkcial. Ekvac., 61 (2018), 135-143.
![]() |
[18] |
M. Ohta and T. Yamaguchi, Strong instability of standing waves for nonlinear Schrödinger equations with double power nonlinearity, SUT J. Math., 51 (2015), 49-58.
![]() |
[19] |
M. Ohta and T. Yamaguchi, Strong instability of standing waves for nonlinear Schrödinger equations with a delta potential, in Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, Kyoto University, B56 (2016), 79-92.
![]() |
[20] |
S. Terracini, N. Tzvetkov and N. Visciglia, The nonlinear Schrödinger equation ground states on product spaces, Anal. PDE, 7 (2014), 73-96.
![]() |
[21] |
J. Zhang, Cross-constrained variational problem and nonlinear Schrödinger equation, in Foundations of Computational Mathematics, World Scientific Publishing, River Edge, NJ, (2002), 457-469.
![]() |