\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement

The author is supported by JSPS KAKENHI Grant Number 15K04968.
Abstract Full Text(HTML) Related Papers Cited by
  • We study the instability of standing wave solutions for nonlinear Schrödinger equations with a one-dimensional harmonic potential in dimension $N≥2$ . We prove that if the nonlinearity is $L^2$ -critical or supercritical in dimension $N-1$ , then any ground states are strongly unstable by blowup.

    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35B35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] P. AntonelliR. Carles and J. Drumond Silva, Scattering for nonlinear Schrödinger equation under partial harmonic confinement, Comm. Math. Phys., 334 (2015), 367-396. 
    [2] J. BellazziniN. BoussaïdL. Jeanjean and N. Visciglia, Existence and stability of standing waves for supercritical NLS with a partial confinement, Comm. Math. Phys., 353 (2017), 229-251. 
    [3] H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris Sér. I Math., 293 (1981), 489-492. 
    [4] H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. 
    [5] R. Carles and C. Gallo, Scattering for the nonlinear Schr¨odinger equation with a general one-dimensional confinement, J. Math. Phys., 56 (2015), 101503, 15 pp.
    [6] T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes in Math., 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
    [7] T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561. 
    [8] R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with critical power nonlinearity and potentials, Adv. Differential Equations, 10 (2005), 259-276. 
    [9] R. Fukuizumi and M. Ohta, Stability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations, 16 (2003), 111-128. 
    [10] R. Fukuizumi and M. Ohta, Instability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations, 16 (2003), 691-706. 
    [11] M. Hirose and M. Ohta, Structure of positive radial solutions to scalar field equations with harmonic potential, J. Differential Equations, 178 (2002), 519-540. 
    [12] M. Hirose and M. Ohta, Uniqueness of positive solutions to scalar field equations with harmonic potential, Funkcial. Ekvac., 50 (2007), 67-100. 
    [13] M. K. Kwong, Uniqueness of positive solutions of $Δ u-u+u^p = 0$ in $\mathbf{R}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266. 
    [14] S. Le Coz, A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations, Adv. Nonlinear Stud., 8 (2008), 455-463. 
    [15] E. H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math., 74 (1983), 441-448. 
    [16] Y. Martel, Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces, Nonlinear Anal., 28 (1997), 1903-1908. 
    [17] M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with harmonic potential, Funkcial. Ekvac., 61 (2018), 135-143. 
    [18] M. Ohta and T. Yamaguchi, Strong instability of standing waves for nonlinear Schrödinger equations with double power nonlinearity, SUT J. Math., 51 (2015), 49-58. 
    [19] M. Ohta and T. Yamaguchi, Strong instability of standing waves for nonlinear Schrödinger equations with a delta potential, in Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, Kyoto University, B56 (2016), 79-92.
    [20] S. TerraciniN. Tzvetkov and N. Visciglia, The nonlinear Schrödinger equation ground states on product spaces, Anal. PDE, 7 (2014), 73-96. 
    [21] J. Zhang, Cross-constrained variational problem and nonlinear Schrödinger equation, in Foundations of Computational Mathematics, World Scientific Publishing, River Edge, NJ, (2002), 457-469.
  • 加载中
SHARE

Article Metrics

HTML views(549) PDF downloads(286) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return