• Previous Article
    On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain
  • CPAA Home
  • This Issue
  • Next Article
    Logarithmic Sobolev and Shannon's inequalities and an application to the uncertainty principle
July  2018, 17(4): 1671-1680. doi: 10.3934/cpaa.2018080

Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Received  June 2017 Revised  December 2017 Published  April 2018

Fund Project: The author is supported by JSPS KAKENHI Grant Number 15K04968.

We study the instability of standing wave solutions for nonlinear Schrödinger equations with a one-dimensional harmonic potential in dimension $N≥2$. We prove that if the nonlinearity is $L^2$-critical or supercritical in dimension $N-1$, then any ground states are strongly unstable by blowup.

Citation: Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080
References:
[1]

P. AntonelliR. Carles and J. Drumond Silva, Scattering for nonlinear Schrödinger equation under partial harmonic confinement, Comm. Math. Phys., 334 (2015), 367-396. 

[2]

J. BellazziniN. BoussaïdL. Jeanjean and N. Visciglia, Existence and stability of standing waves for supercritical NLS with a partial confinement, Comm. Math. Phys., 353 (2017), 229-251. 

[3]

H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris Sér. I Math., 293 (1981), 489-492. 

[4]

H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. 

[5]

R. Carles and C. Gallo, Scattering for the nonlinear Schr¨odinger equation with a general one-dimensional confinement, J. Math. Phys., 56 (2015), 101503, 15 pp.

[6]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes in Math., 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

[7]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561. 

[8]

R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with critical power nonlinearity and potentials, Adv. Differential Equations, 10 (2005), 259-276. 

[9]

R. Fukuizumi and M. Ohta, Stability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations, 16 (2003), 111-128. 

[10]

R. Fukuizumi and M. Ohta, Instability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations, 16 (2003), 691-706. 

[11]

M. Hirose and M. Ohta, Structure of positive radial solutions to scalar field equations with harmonic potential, J. Differential Equations, 178 (2002), 519-540. 

[12]

M. Hirose and M. Ohta, Uniqueness of positive solutions to scalar field equations with harmonic potential, Funkcial. Ekvac., 50 (2007), 67-100. 

[13]

M. K. Kwong, Uniqueness of positive solutions of $Δ u-u+u^p = 0$ in $\mathbf{R}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266. 

[14]

S. Le Coz, A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations, Adv. Nonlinear Stud., 8 (2008), 455-463. 

[15]

E. H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math., 74 (1983), 441-448. 

[16]

Y. Martel, Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces, Nonlinear Anal., 28 (1997), 1903-1908. 

[17]

M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with harmonic potential, Funkcial. Ekvac., 61 (2018), 135-143. 

[18]

M. Ohta and T. Yamaguchi, Strong instability of standing waves for nonlinear Schrödinger equations with double power nonlinearity, SUT J. Math., 51 (2015), 49-58. 

[19]

M. Ohta and T. Yamaguchi, Strong instability of standing waves for nonlinear Schrödinger equations with a delta potential, in Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, Kyoto University, B56 (2016), 79-92.

[20]

S. TerraciniN. Tzvetkov and N. Visciglia, The nonlinear Schrödinger equation ground states on product spaces, Anal. PDE, 7 (2014), 73-96. 

[21]

J. Zhang, Cross-constrained variational problem and nonlinear Schrödinger equation, in Foundations of Computational Mathematics, World Scientific Publishing, River Edge, NJ, (2002), 457-469.

show all references

References:
[1]

P. AntonelliR. Carles and J. Drumond Silva, Scattering for nonlinear Schrödinger equation under partial harmonic confinement, Comm. Math. Phys., 334 (2015), 367-396. 

[2]

J. BellazziniN. BoussaïdL. Jeanjean and N. Visciglia, Existence and stability of standing waves for supercritical NLS with a partial confinement, Comm. Math. Phys., 353 (2017), 229-251. 

[3]

H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris Sér. I Math., 293 (1981), 489-492. 

[4]

H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. 

[5]

R. Carles and C. Gallo, Scattering for the nonlinear Schr¨odinger equation with a general one-dimensional confinement, J. Math. Phys., 56 (2015), 101503, 15 pp.

[6]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes in Math., 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

[7]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561. 

[8]

R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with critical power nonlinearity and potentials, Adv. Differential Equations, 10 (2005), 259-276. 

[9]

R. Fukuizumi and M. Ohta, Stability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations, 16 (2003), 111-128. 

[10]

R. Fukuizumi and M. Ohta, Instability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations, 16 (2003), 691-706. 

[11]

M. Hirose and M. Ohta, Structure of positive radial solutions to scalar field equations with harmonic potential, J. Differential Equations, 178 (2002), 519-540. 

[12]

M. Hirose and M. Ohta, Uniqueness of positive solutions to scalar field equations with harmonic potential, Funkcial. Ekvac., 50 (2007), 67-100. 

[13]

M. K. Kwong, Uniqueness of positive solutions of $Δ u-u+u^p = 0$ in $\mathbf{R}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266. 

[14]

S. Le Coz, A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations, Adv. Nonlinear Stud., 8 (2008), 455-463. 

[15]

E. H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math., 74 (1983), 441-448. 

[16]

Y. Martel, Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces, Nonlinear Anal., 28 (1997), 1903-1908. 

[17]

M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with harmonic potential, Funkcial. Ekvac., 61 (2018), 135-143. 

[18]

M. Ohta and T. Yamaguchi, Strong instability of standing waves for nonlinear Schrödinger equations with double power nonlinearity, SUT J. Math., 51 (2015), 49-58. 

[19]

M. Ohta and T. Yamaguchi, Strong instability of standing waves for nonlinear Schrödinger equations with a delta potential, in Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, Kyoto University, B56 (2016), 79-92.

[20]

S. TerraciniN. Tzvetkov and N. Visciglia, The nonlinear Schrödinger equation ground states on product spaces, Anal. PDE, 7 (2014), 73-96. 

[21]

J. Zhang, Cross-constrained variational problem and nonlinear Schrödinger equation, in Foundations of Computational Mathematics, World Scientific Publishing, River Edge, NJ, (2002), 457-469.

[1]

Chenglin Wang, Jian Zhang. Cross-constrained variational method and nonlinear Schrödinger equation with partial confinement. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021036

[2]

Huifang Jia, Gongbao Li, Xiao Luo. Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2739-2766. doi: 10.3934/dcds.2020148

[3]

Yi He, Lu Lu, Wei Shuai. Concentrating ground-state solutions for a class of Schödinger-Poisson equations in $\mathbb{R}^3$ involving critical Sobolev exponents. Communications on Pure and Applied Analysis, 2016, 15 (1) : 103-125. doi: 10.3934/cpaa.2016.15.103

[4]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

[5]

Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091

[6]

Qian Shen, Na Wei. Stability of ground state for the Schrödinger-Poisson equation. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2805-2816. doi: 10.3934/jimo.2020095

[7]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[8]

Xuan Liu, Ting Zhang. $ H^2 $ blowup result for a Schrödinger equation with nonlinear source term. Electronic Research Archive, 2020, 28 (2) : 777-794. doi: 10.3934/era.2020039

[9]

Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050

[10]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[11]

Chao Ji. Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6071-6089. doi: 10.3934/dcdsb.2019131

[12]

Kazuhiro Kurata, Yuki Osada. Asymptotic expansion of the ground state energy for nonlinear Schrödinger system with three wave interaction. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4239-4251. doi: 10.3934/cpaa.2021157

[13]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[14]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[15]

Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026

[16]

Hangzhou Hu, Yuan Li, Dun Zhao. Ground state for fractional Schrödinger-Poisson equation in Coulomb-Sobolev space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1899-1916. doi: 10.3934/dcdss.2021064

[17]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

[18]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure and Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[19]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[20]

Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5317-5336. doi: 10.3934/dcdsb.2019060

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (263)
  • HTML views (193)
  • Cited by (5)

Other articles
by authors

[Back to Top]