Advanced Search
Article Contents
Article Contents

On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain

Partially supported by JSPS@Grant-in-aid for Scientific Research (A) -17H0109, Top Global University Project, and JSPS program of the Japanese-German Graduate Externship.
Abstract Full Text(HTML) Related Papers Cited by
  • This paper deals with the local well-posedness of free boundary problems for the Navier-Stokes equations in the case where the fluid initially occupies an exterior domain $Ω$ in $N$ -dimensional Euclidian space $\mathbb{R}^N$ .

    Mathematics Subject Classification: Primary: 35Q35; Secondary: 76D07.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Abels, The initial-value problem for the Navier-Stokes equations with a free surface in $L^q$-Sobolev spaces, Adv. Differential Eqns., 10 (2005), 45-64. 
    [2] H. Amann, Linear and Quasilinear Parabolic Problems, Vol. Ⅰ. Birkhäuser, Basel, 1995.
    [3] J. T. Beale, The initial value problem for the Navier-Stokes equations with a free boundary, Comm. Pure Appl. Math., 31 (1980), 359-392. 
    [4] J. T. Beale, Large time regularity of viscous surface waves, Arch. Rat. Mech. Anal., 84 (1984), 307-352. 
    [5] J. T. Beale and T. Nishida, Large time behavior of viscous surface waves, Lecture Notes in Numer. Appl. Anal., 8 (1985), 1-14. 
    [6] D. Bothe and J. Prüss, $L_p$ theory for a class of non-Newtonian fluids, SIAM J. Math. Anal., 39 (2007), 379-421. 
    [7] A. P. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Symp. in Pure Math., 4 (1961), 33-49. 
    [8] Y. Enomoto and Y. Shibata, On the $\mathcal{R}$-sectoriality and its application to some mathematical study of the viscous compressible fluids, Funkcial. Ekvac., 56 (2013), 441-505. 
    [9] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady State Problem, Second Edition, Springer Monographs, Springer, 2011.
    [10] Y. Hataya and S. Kawashima, Decaying solution of the Navier-Stokes flow of infinite volume without surface tension, Nonlinear Anal., 71 (2009), 2535-2539. 
    [11] Y. Hataya, A remark on Beal-Nishida's paper, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 293-303. 
    [12] I. Sh. Mogilevskii, Estimates of solutions of a general intial-boundary value problem for the linear nonstationary system of Navier-Stokes equations in a half-space, Zap Nauchn. Sem. LOMI., 84 (1979), 147-173. 
    [13] I. Sh. Mogilevskii, Solvability of a general boundary value problem for a linearized nonstationary system of Navier-Stokes equations, Zap Nauchn. Sem. LOMI., 110 (1981), 105-119. 
    [14] P. B. Mucha and W. Zajączkowski, On the existence for the Cauchy-Neumann problem for the Stokes system in the Lp-framework, Studia Math., 143 (2000), 75-101. 
    [15] T. Nishida, Equations of fluid dynamics -free surface problems, Comm. Pure Appl. Math., 39 (1986), 221-238. 
    [16] J. Prüss and G. Simonett, Moving Interfaces ad Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, vol. 105, Birkhäuser, 2016.
    [17] T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, Walter de Gruyter, Berlin, New York, 1996.
    [18] H. Saito and Y. Shibata, On the global wellposedness of free boundary problem for the Navier Stokes systems with surface tension, Preprint.
    [19] M. Schonbek and Y. Shibata, On a global well-posedness of strong dynamics of incompressible nematic liquid crystals in ${\mathbb{R}^N}$, J. Evol. Equ., (2017), 537-550.  doi: 10.1007/s00028-016-0358-y.
    [20] Y. Shibata, On the $\mathcal{R}$-boundedness of solution operators for the Stokes equations with free boundary condition, Diff. Int. Eqns., 27 (2014), 313-368. 
    [21] Y. Shibata, On some free boundary problem of the Navier-Stokes equations in the maximal Lp-Lq regularity class, J. Differential Equations., 258 (2015), 4127-4155. 
    [22] Y. Shibata, On the $\mathcal{R}$-bounded solution operators in the study of free boundary problem for the Navier-Stokes equations, in Mathematical Fluid Dynamics, Present and Futureh Tokyo, Japan, November 2014 (ed. Y. Shibata and Y. Suzuki), Springer Proceedings in Mathematics & Statistics, Vol. 183, (2016), 203-285.
    [23] Y. Shibata, Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface, Evolution Equations and Control Theory, 7 (2018), 117-152. 
    [24] Y. Shibata, Global wellposedness for the free boundary problem of the Navier-Stokes equations in an exterior domain, Fluid Mech. Res. Int. , 1 (2017), 00008. DOI: 10.15406/fimrij.2017.01.00008.
    [25] Y. Shibata, On Lp-Lq decay estimate for Stokes equations with free boundary condition in an exterior domain, Accepted for publication in Asymptotic Analysis.
    [26] Y. Shibata and S. Shimizu, On a resolvent estimate for the Stokes system with Neumann boundary condition, Diff. Int. Eqns., 16 (2003), 385-426. 
    [27] Y. Shibata and S. Shimizu, Decay properties of the Stokes semigroup in exterior domains with Neumann boundary condition, J. Math. Soc. Japan, 59 (2007), 1-34. 
    [28] Y. Shibata and S. Shimizu, On the Lp-Lq maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, J. Reine Angew. Math., 615 (2008), 157-209. 
    [29] C. G. Simader and H. Sohr, The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domain, Pitmann Research Notes in Mathematics Series 360, Addison Wesley Longman Limited, 1996.
    [30] V. A. Solonnikov, On the transient motion of an isolated volume of viscous incompressible fluid, Math. USSR Izvestiya, 31 (1988), 381-405. 
    [31] V. Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface, J. Soviet Math., 40 (1988), 672-685. 
    [32] O. Steiger, On Navier-Stokes equations with first order boundary conditions, J. Math. Fluid Mech., 8 (2006), 456-481. 
    [33] H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Pure and Applied Mathematics, A Series of Monographs and Textbooks, Marcel Dekker, Inc. New York·Basel, 1997.
    [34] N. Tanaka, Global existence of two phase non-homogeneous viscous incompressible weak fluid flow, Commun. Partial Differential Equations, 18 (1993), 41-81. 
    [35] A. Tani, Small-time existence for the three-dimensional incompressible Navier-Stokes equations with a free surface, Arch. Rat. Mech. Anal., 133 (1996), 299-331. 
    [36] A. Tani and N. Tanaka, Large time existence of surface waves in incompressible viscous fluids with or without surface tension, Arch. Rat. Mech. Anal., 130 (1995), 303-314. 
    [37] L. Weis, Operator-valued Fourier multiplier theorems and maximal Lp-regularity, Math. Ann., 319 (2001), 735-758. 
  • 加载中

Article Metrics

HTML views(1396) PDF downloads(375) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint