This paper is concerned with the elliptic system
$\begin{cases}-{\triangle u} = (q+1)u^qv^{p+1},~~ u>0~ in~ R^n,\\-{\triangle v} = (p+1)v^pu^{q+1},~~ v>0~in ~R^n,\end{cases}$
where $ n ≥ 3 $, $ p,q>0 $ and $ \max\{p,q\} ≥ 1 $. We discuss the nonexistence of positive solutions in subcritical case and stable solutions in supercritical case, the necessary and sufficient conditions of classification in the critical case, and the Joseph-Lundgren-type condition for existence of local stable solutions.
Citation: |
[1] |
M.-F. Bidaut-Véron and Th. Raoux, Asymptotics of solutions of some nonlinear elliptic systems, Comm. Partial Differential Equations, 21 (1996), 1035-1086.
doi: 10.1080/03605309608821217.![]() ![]() ![]() |
[2] |
L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304.![]() ![]() ![]() |
[3] |
G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.
doi: 10.1007/s00032-008-0090-3.![]() ![]() ![]() |
[4] |
W. Chen, L. Dupaigne and M. Ghergu, A new critical curve for the Lane-Emden system, Discrete Contin. Dyn. Syst., 34 (2014), 2469-2479.
doi: 10.3934/dcds.2014.34.2469.![]() ![]() ![]() |
[5] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8.![]() ![]() ![]() |
[6] |
W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci., 29B (2009), 949-960.
doi: 10.1016/S0252-9602(09)60079-5.![]() ![]() ![]() |
[7] |
W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series on Diff. Equa. Dyn. Sys., Vol. 4, 2010.
![]() ![]() |
[8] |
W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, Commun. Pure Appl. Anal., 12 (2013), 2497-2514.
doi: 10.3934/cpaa.2013.12.2497.![]() ![]() ![]() |
[9] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
[10] |
K. Chou and C. Chu, On the best constant for a weighted Sobolev-Hardy inequality, J. London Math. Soc., 2 (1993), 137-151.
doi: 10.1112/jlms/s2-48.1.137.![]() ![]() ![]() |
[11] |
J. Davila, L. Dupaigne, K. Wang and J. Wei, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Adv. Math., 258 (2014), 240-285.
doi: 10.1016/j.aim.2014.02.034.![]() ![]() ![]() |
[12] |
A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $ R^N $, J. Math. Pures Appl., 87 (2007), 537-561.
doi: 10.1016/j.matpur.2007.03.001.![]() ![]() ![]() |
[13] |
B. Gidas, W. -M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $ R^{n} $ (collected in the book Mathematical Analysis and Applications, which is vol. 7a of the book series Advances in Mathematics. Supplementary Studies, Academic Press, New York, 1981. )
![]() ![]() |
[14] |
B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406.![]() ![]() ![]() |
[15] |
D. Joseph and T. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Meth. Anal., 49 (1972/73), 241-269.
doi: 10.1007/BF00250508.![]() ![]() ![]() |
[16] |
Y. Lei, On the regularity of positive solutions of a class of Choquard type equations, Math. Z., 273 (2013), 883-905.
doi: 10.1007/s00209-012-1036-6.![]() ![]() ![]() |
[17] |
Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315.
doi: 10.3934/dcds.2016.36.3277.![]() ![]() ![]() |
[18] |
W.-M. Ni, On the elliptic equation $ Δ u+K(x)u^{(n+2)/(n-2)} = 0 $, its generalizations, and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529.
doi: 10.1512/iumj.1982.31.31040.![]() ![]() ![]() |
[19] |
W.-M. Ni and J. Serrin, Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case, Accad. Naz. Lincei., 77 (1986), 231-257.
![]() |
[20] |
P. Polacik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part Ⅰ: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8.![]() ![]() ![]() |
[21] |
P. Quittner and Ph. Souplet, Symmetry of components for semilinear elliptic systems, SIAM J. Math. Anal., 44 (2012), 2545-2559.
doi: 10.1137/11085428X.![]() ![]() ![]() |
[22] |
J. Serrin, Isolated singularities of solutions of quasilinear equations, Acta Math., 113 (1965), 219-240.
![]() ![]() |
[23] |
X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.
doi: 10.2307/2154232.![]() ![]() ![]() |
[24] |
Y. Zhao and Y. Lei, Asymptotic behavior of positive solutions of a nonlinear integral system, Nonlinear Anal., 75 (2012), 1989-1999.
doi: 10.1016/j.na.2011.09.051.![]() ![]() ![]() |