September  2018, 17(5): 1749-1764. doi: 10.3934/cpaa.2018083

On existence and nonexistence of positive solutions of an elliptic system with coupled terms

1. 

Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China

2. 

Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China

Received  April 2017 Revised  December 2017 Published  April 2018

Fund Project: This research was supported by NSF (11471164, 11671209) of China.

This paper is concerned with the elliptic system
$\begin{cases}-{\triangle u} = (q+1)u^qv^{p+1},~~ u>0~ in~ R^n,\\-{\triangle v} = (p+1)v^pu^{q+1},~~ v>0~in ~R^n,\end{cases}$
where
$ n ≥ 3 $
,
$ p,q>0 $
and
$ \max\{p,q\} ≥ 1 $
. We discuss the nonexistence of positive solutions in subcritical case and stable solutions in supercritical case, the necessary and sufficient conditions of classification in the critical case, and the Joseph-Lundgren-type condition for existence of local stable solutions.
Citation: Yayun Li, Yutian Lei. On existence and nonexistence of positive solutions of an elliptic system with coupled terms. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1749-1764. doi: 10.3934/cpaa.2018083
References:
[1]

M.-F. Bidaut-Véron and Th. Raoux, Asymptotics of solutions of some nonlinear elliptic systems, Comm. Partial Differential Equations, 21 (1996), 1035-1086.  doi: 10.1080/03605309608821217.  Google Scholar

[2]

L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.  Google Scholar

[3]

G. CaristiL. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.  doi: 10.1007/s00032-008-0090-3.  Google Scholar

[4]

W. ChenL. Dupaigne and M. Ghergu, A new critical curve for the Lane-Emden system, Discrete Contin. Dyn. Syst., 34 (2014), 2469-2479.  doi: 10.3934/dcds.2014.34.2469.  Google Scholar

[5]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[6]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci., 29B (2009), 949-960.  doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[7]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series on Diff. Equa. Dyn. Sys., Vol. 4, 2010.  Google Scholar

[8]

W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, Commun. Pure Appl. Anal., 12 (2013), 2497-2514.  doi: 10.3934/cpaa.2013.12.2497.  Google Scholar

[9]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[10]

K. Chou and C. Chu, On the best constant for a weighted Sobolev-Hardy inequality, J. London Math. Soc., 2 (1993), 137-151.  doi: 10.1112/jlms/s2-48.1.137.  Google Scholar

[11]

J. DavilaL. DupaigneK. Wang and J. Wei, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Adv. Math., 258 (2014), 240-285.  doi: 10.1016/j.aim.2014.02.034.  Google Scholar

[12]

A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $ R^N $, J. Math. Pures Appl., 87 (2007), 537-561.  doi: 10.1016/j.matpur.2007.03.001.  Google Scholar

[13]

B. Gidas, W. -M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $ R^{n} $ (collected in the book Mathematical Analysis and Applications, which is vol. 7a of the book series Advances in Mathematics. Supplementary Studies, Academic Press, New York, 1981. )  Google Scholar

[14]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar

[15]

D. Joseph and T. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Meth. Anal., 49 (1972/73), 241-269. doi: 10.1007/BF00250508.  Google Scholar

[16]

Y. Lei, On the regularity of positive solutions of a class of Choquard type equations, Math. Z., 273 (2013), 883-905.  doi: 10.1007/s00209-012-1036-6.  Google Scholar

[17]

Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315. doi: 10.3934/dcds.2016.36.3277.  Google Scholar

[18]

W.-M. Ni, On the elliptic equation $ Δ u+K(x)u^{(n+2)/(n-2)} = 0 $, its generalizations, and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529.  doi: 10.1512/iumj.1982.31.31040.  Google Scholar

[19]

W.-M. Ni and J. Serrin, Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case, Accad. Naz. Lincei., 77 (1986), 231-257.   Google Scholar

[20]

P. PolacikP. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part Ⅰ: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[21]

P. Quittner and Ph. Souplet, Symmetry of components for semilinear elliptic systems, SIAM J. Math. Anal., 44 (2012), 2545-2559.  doi: 10.1137/11085428X.  Google Scholar

[22]

J. Serrin, Isolated singularities of solutions of quasilinear equations, Acta Math., 113 (1965), 219-240.   Google Scholar

[23]

X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.  doi: 10.2307/2154232.  Google Scholar

[24]

Y. Zhao and Y. Lei, Asymptotic behavior of positive solutions of a nonlinear integral system, Nonlinear Anal., 75 (2012), 1989-1999. doi: 10.1016/j.na.2011.09.051.  Google Scholar

show all references

References:
[1]

M.-F. Bidaut-Véron and Th. Raoux, Asymptotics of solutions of some nonlinear elliptic systems, Comm. Partial Differential Equations, 21 (1996), 1035-1086.  doi: 10.1080/03605309608821217.  Google Scholar

[2]

L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.  Google Scholar

[3]

G. CaristiL. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.  doi: 10.1007/s00032-008-0090-3.  Google Scholar

[4]

W. ChenL. Dupaigne and M. Ghergu, A new critical curve for the Lane-Emden system, Discrete Contin. Dyn. Syst., 34 (2014), 2469-2479.  doi: 10.3934/dcds.2014.34.2469.  Google Scholar

[5]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[6]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci., 29B (2009), 949-960.  doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[7]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series on Diff. Equa. Dyn. Sys., Vol. 4, 2010.  Google Scholar

[8]

W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, Commun. Pure Appl. Anal., 12 (2013), 2497-2514.  doi: 10.3934/cpaa.2013.12.2497.  Google Scholar

[9]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[10]

K. Chou and C. Chu, On the best constant for a weighted Sobolev-Hardy inequality, J. London Math. Soc., 2 (1993), 137-151.  doi: 10.1112/jlms/s2-48.1.137.  Google Scholar

[11]

J. DavilaL. DupaigneK. Wang and J. Wei, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Adv. Math., 258 (2014), 240-285.  doi: 10.1016/j.aim.2014.02.034.  Google Scholar

[12]

A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $ R^N $, J. Math. Pures Appl., 87 (2007), 537-561.  doi: 10.1016/j.matpur.2007.03.001.  Google Scholar

[13]

B. Gidas, W. -M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $ R^{n} $ (collected in the book Mathematical Analysis and Applications, which is vol. 7a of the book series Advances in Mathematics. Supplementary Studies, Academic Press, New York, 1981. )  Google Scholar

[14]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar

[15]

D. Joseph and T. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Meth. Anal., 49 (1972/73), 241-269. doi: 10.1007/BF00250508.  Google Scholar

[16]

Y. Lei, On the regularity of positive solutions of a class of Choquard type equations, Math. Z., 273 (2013), 883-905.  doi: 10.1007/s00209-012-1036-6.  Google Scholar

[17]

Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315. doi: 10.3934/dcds.2016.36.3277.  Google Scholar

[18]

W.-M. Ni, On the elliptic equation $ Δ u+K(x)u^{(n+2)/(n-2)} = 0 $, its generalizations, and applications in geometry, Indiana Univ. Math. J., 31 (1982), 493-529.  doi: 10.1512/iumj.1982.31.31040.  Google Scholar

[19]

W.-M. Ni and J. Serrin, Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case, Accad. Naz. Lincei., 77 (1986), 231-257.   Google Scholar

[20]

P. PolacikP. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part Ⅰ: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[21]

P. Quittner and Ph. Souplet, Symmetry of components for semilinear elliptic systems, SIAM J. Math. Anal., 44 (2012), 2545-2559.  doi: 10.1137/11085428X.  Google Scholar

[22]

J. Serrin, Isolated singularities of solutions of quasilinear equations, Acta Math., 113 (1965), 219-240.   Google Scholar

[23]

X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.  doi: 10.2307/2154232.  Google Scholar

[24]

Y. Zhao and Y. Lei, Asymptotic behavior of positive solutions of a nonlinear integral system, Nonlinear Anal., 75 (2012), 1989-1999. doi: 10.1016/j.na.2011.09.051.  Google Scholar

[1]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[2]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[3]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[4]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[5]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[8]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[9]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[10]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[13]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[14]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[15]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[16]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[17]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[18]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[19]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[20]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (156)
  • HTML views (250)
  • Cited by (0)

Other articles
by authors

[Back to Top]