\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Positive radial solutions of a nonlinear boundary value problem

Abstract Full Text(HTML) Related Papers Cited by
  • In this work we study the following quasilinear elliptic equation:

    $\left\{ {\begin{array}{*{20}{l}}{ - {\rm{div}}(\frac{{|x{|^\alpha }\nabla u}}{{{{(a(|x|) + g(u))}^\gamma }}}) = |x{|^\beta }{u^p}}&{{\rm{in}} \ \Omega }\\{u = 0}&{{\rm{on}}\;\;\;\;\partial \Omega }\end{array}} \right.$

    where $ a $ is a positive continuous function, $ g $ is a nonnegative and nondecreasing continuous function, $ Ω = B_R $, is the ball of radius $ R>0 $ centered at the origin in $ \mathbb{R} ^N $, $N≥3 $ and, the constants $ α,β∈\mathbb{R} $, $ γ∈(0,1) $ and $ p>1 $.

    We derive a new Liouville type result for a kind of "broken equation". This result together with blow-up techniques, a priori estimates and a fixed-point result of Krasnosel'skii, allow us to ensure the existence of a positive radial solution. In this paper we also obtain a non-existence result, proven through a variation of the Pohozaev identity.

    Mathematics Subject Classification: 35B09, 35B45, 35B53, 35J62, 58J20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. AlvinoL. BoccardoV. FeroneL. Orsina and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity, Annali di Matematica., 182 (2000), 53-79. 
    [2] A. BenkiraneA. Youssfi and D. Meskine, Bounded solutions for nonlinear elliptic equations with degenerate coercivity and data in an L log L, Bull. Belg Math. Soc. Simon Stevin, 15 (2008), 369-375. 
    [3] L. Boccardo, Some elliptic problems whit degenerate coercivity, Avanced Nonlinear Studies,, 6 (2006), 1-12. 
    [4] L. Boccardo and H. Brezis, Some Remarks on a class of elliptic equations with degenerate coercivity, Bollettino U. M. I., 8 (2003), 521-530. 
    [5] L. BoccardoA. Dall'aglio and L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena., 46 (1998), suppl., 51-81. 
    [6] L. BoccardoS. Segura de León and C. Trombetti, Bounded and unbounded solutions for a class of quasi-linear elliptic problems whit a quadratic gradient term, J. Math. Pures Appl., 9 (2001), 919-940. 
    [7] P. ClementD. de Figueiredo and E. Mitidieri, Quasilinear elliptic equation with critical exponents, Topol. Methods Nonlinear Anal., 7 (1996), 133-170. 
    [8] P. ClementR. Manásevich and E. Mitidieri, Positive solutions for a quasilinear system via blow up, Comm. in P.D.E., 18 (1993), 2071-2106. 
    [9] L. Evans, Partial Differential Equations, American Mathematical Soc., 01 June 1998.
    [10] M. A. Krasnosel'skii, Positive Solutions of Operators Equations, Noordhoff, Groningen, 1964.
    [11] S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Partial Differential Equations, 36 (2011), 2011-2047. 
    [12] M-F. Bidaut-Veron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Arch. Rational Mech. Anal., 107 (1989), 293-324. 
    [13] M-F. Bidaut-Veron and S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal. Math., 84 (2001), 1-49. 
    [14] Ph. ClementD. G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations, 17 (1992), 923-940. 
    [15] L. Damascelli, A. Farina, B. Sciunzi and E. Valdinoci, Liouville results for m-Laplace equations of Lane-Emden-Fowler type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1099-1119
    [16] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901. 
    [17] B. Gidas and J. Spruck, J. Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598. 
    [18] N. KawanoW. Ni and S. Yotsutani, A generalized Pohozaev identity and its applications, J. Math. Soc. Jpn., 42 (1990), 541-564. 
    [19] M. A. Krasnoselskii, Fixed point of cone-compressing or cone-extending operators Soviet, Math. Dokl., 1 (1960), 1285-1288. 
    [20] E. Mitidieri and S. I. Pokhozhaev, Absence of positive solutions for quasilinear elliptic problems in $ \mathbb{R} ^N $, Tr. Mat. Inst. Steklova, 227 (1999) 192-222 (Issled. po Teor. Differ. Funkts. Mnogikh Perem. i ee Prilozh. 18).
    [21] S. I. Pohožaev, On the eigenfunctions of the equation $ Δ u+λ f(u)=0 $, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39. 
    [22] J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189 (2002), 79-142. 
  • 加载中
SHARE

Article Metrics

HTML views(392) PDF downloads(311) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return