
Previous Article
A free boundary problem for the FisherKPP equation with a given moving boundary
 CPAA Home
 This Issue

Next Article
On the blowup solutions for the fractional nonlinear Schrödinger equation with combined powertype nonlinearities
Global existence and blowup of solutions to a singular NonNewton polytropic filtration equation with critical and supercritical initial energy
1.  School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China 
2.  College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China 
In this paper, we revisit the singular NonNewton polytropic filtration equation, which was studied extensively in the recent years. However, all the studies are mostly concerned with subcritical initial energy, i.e., $E(u_0)<d$, where $E(u_0)$ is the initial energy and $d$ is the mountainpass level. The main purpose of this paper is to study the behaviors of the solution with $E(u_0)≥d$ by potential well method and some differential inequality techniques.
References:
[1] 
M. Badiale and G. Tarantello, A sobolevhardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Archive for Rational Mechanics and Analysis, 163 (2002), 259293. 
[2] 
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer New York, 2010. 
[3] 
F. Gazzola and T. Weth, Finite time blowup and global solutions for semilinear parabolic equations with initial data at high energy level, Differential and Integral Equations, 18 (2005), 961990. 
[4] 
B. Guo and W. J. Gao, Blowup of solutions to quasilinear hyperbolic equations with $p(x,t)$laplacian and positive initial energy, Comptes Rendus Mecanique, 342 (2014), 513519. 
[5] 
A. J. Hao and J. Zhou, A new blowup condition for semilinear edge degenerate parabolic equation with singular potentials, Applicable Analysis, (2016), 112. 
[6] 
Y. Hu, J. Li and L. W. Wang, Blowup phenomena for porous medium equation with nonlinear flux on the boundary, Journal of Applied Mathematics, 2013 (2013), 15. 
[7] 
A. Khelghati and K. Baghaei, Blowup phenomena for a nonlocal semilinear parabolic equation with positive initial energy, Computers and Mathematics with Applications, 70 (2015), 896902. 
[8] 
Q. W. Li, W. J. Gao and Y. Z. Han, Global existence blow up and extinction for a class of thinfilm equation, Nonlinear Analysis Theory Methods and Applications, 147 (2016), 96109. 
[9] 
L. R. Luo and J. Zhou, Global existence and blowup to the solutions of a singular porous medium equation with critical initial energy, Boundary Value Problems, 2016 (2016), 18. 
[10] 
X. L. Wu, B. Guo and W. J. Gao, Blowup of solutions for a semilinear parabolic equation involving variable source and positive initial energy, Applied Mathematics Letters, 26 (2013), 539543. 
[11] 
X. L. Wu and W. J. Guo, Blowup of the solution for a class of porous medium equation with positive initial energy, Acta Math Sci, 33 (2013), 10241030. 
[12] 
Z. Q. Wu, J. X. Yin, H. L. Li and J. N. Zhao, Nonlinear diffusion equations. World Scientific Publishing Co. inc. river Edge Nj, 2001. 
[13] 
R. Z. Xu and J. Su, Global existence and finite time blowup for a class of semilinear pseudoparabolic equations, Journal of Functional Analysis, 264 (2013), 27322763. 
[14] 
Y. Wang, The existence of global solution and the blowup problem for some $p$laplace heat equations, Acta Math Sci, 27 (2007), 274282. 
[15] 
Z. Tan, NonNewton Filtration Equation with special medium void, Acta Math Sci, 24B (2014), 118128. 
[16] 
J. Zhou, A multidimension blowup problem to a porous medium diffusion equation with special medium void, Applied Mathematics Letters, 30 (2014), 611. 
[17] 
J. Zhou, Global existence and blowup of solutions for a nonnewton polytropic filtration system with special volumetric moisture content, Computers and Mathematics with Applications, 71 (2016), 11631172. 
show all references
References:
[1] 
M. Badiale and G. Tarantello, A sobolevhardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Archive for Rational Mechanics and Analysis, 163 (2002), 259293. 
[2] 
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer New York, 2010. 
[3] 
F. Gazzola and T. Weth, Finite time blowup and global solutions for semilinear parabolic equations with initial data at high energy level, Differential and Integral Equations, 18 (2005), 961990. 
[4] 
B. Guo and W. J. Gao, Blowup of solutions to quasilinear hyperbolic equations with $p(x,t)$laplacian and positive initial energy, Comptes Rendus Mecanique, 342 (2014), 513519. 
[5] 
A. J. Hao and J. Zhou, A new blowup condition for semilinear edge degenerate parabolic equation with singular potentials, Applicable Analysis, (2016), 112. 
[6] 
Y. Hu, J. Li and L. W. Wang, Blowup phenomena for porous medium equation with nonlinear flux on the boundary, Journal of Applied Mathematics, 2013 (2013), 15. 
[7] 
A. Khelghati and K. Baghaei, Blowup phenomena for a nonlocal semilinear parabolic equation with positive initial energy, Computers and Mathematics with Applications, 70 (2015), 896902. 
[8] 
Q. W. Li, W. J. Gao and Y. Z. Han, Global existence blow up and extinction for a class of thinfilm equation, Nonlinear Analysis Theory Methods and Applications, 147 (2016), 96109. 
[9] 
L. R. Luo and J. Zhou, Global existence and blowup to the solutions of a singular porous medium equation with critical initial energy, Boundary Value Problems, 2016 (2016), 18. 
[10] 
X. L. Wu, B. Guo and W. J. Gao, Blowup of solutions for a semilinear parabolic equation involving variable source and positive initial energy, Applied Mathematics Letters, 26 (2013), 539543. 
[11] 
X. L. Wu and W. J. Guo, Blowup of the solution for a class of porous medium equation with positive initial energy, Acta Math Sci, 33 (2013), 10241030. 
[12] 
Z. Q. Wu, J. X. Yin, H. L. Li and J. N. Zhao, Nonlinear diffusion equations. World Scientific Publishing Co. inc. river Edge Nj, 2001. 
[13] 
R. Z. Xu and J. Su, Global existence and finite time blowup for a class of semilinear pseudoparabolic equations, Journal of Functional Analysis, 264 (2013), 27322763. 
[14] 
Y. Wang, The existence of global solution and the blowup problem for some $p$laplace heat equations, Acta Math Sci, 27 (2007), 274282. 
[15] 
Z. Tan, NonNewton Filtration Equation with special medium void, Acta Math Sci, 24B (2014), 118128. 
[16] 
J. Zhou, A multidimension blowup problem to a porous medium diffusion equation with special medium void, Applied Mathematics Letters, 30 (2014), 611. 
[17] 
J. Zhou, Global existence and blowup of solutions for a nonnewton polytropic filtration system with special volumetric moisture content, Computers and Mathematics with Applications, 71 (2016), 11631172. 
[1] 
Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blowup for a generalized CH equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 17331748. doi: 10.3934/dcds.2017072 
[2] 
Ronghua Jiang, Jun Zhou. Blowup and global existence of solutions to a parabolic equation associated with the fraction pLaplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 12051226. doi: 10.3934/cpaa.2019058 
[3] 
Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blowup phenomena for a weakly dissipative DegasperisProcesi equation. Discrete and Continuous Dynamical Systems  B, 2009, 12 (3) : 633645. doi: 10.3934/dcdsb.2009.12.633 
[4] 
Xiumei Deng, Jun Zhou. Global existence and blowup of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923939. doi: 10.3934/cpaa.2020042 
[5] 
Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blowup for damped stochastic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems  B, 2019, 24 (12) : 68376854. doi: 10.3934/dcdsb.2019169 
[6] 
Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blowup for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems  S, 2022 doi: 10.3934/dcdss.2022106 
[7] 
Hailong Ye, Jingxue Yin. Instantaneous shrinking and extinction for a nonNewtonian polytropic filtration equation with orientated convection. Discrete and Continuous Dynamical Systems  B, 2017, 22 (4) : 17431755. doi: 10.3934/dcdsb.2017083 
[8] 
Shouming Zhou, Chunlai Mu, Liangchen Wang. Wellposedness, blowup phenomena and global existence for the generalized $b$equation with higherorder nonlinearities and weak dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 843867. doi: 10.3934/dcds.2014.34.843 
[9] 
Yue Cao. Blowup criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28 (1) : 2746. doi: 10.3934/era.2020003 
[10] 
Shiming Li, Yongsheng Li, Wei Yan. A global existence and blowup threshold for DaveyStewartson equations in $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems  S, 2016, 9 (6) : 18991912. doi: 10.3934/dcdss.2016077 
[11] 
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blowup and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369381. doi: 10.3934/era.2020021 
[12] 
Bin Li. On the blowup criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic and Related Models, 2019, 12 (5) : 11311162. doi: 10.3934/krm.2019043 
[13] 
Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blowup to a reactiondiffusion system with nonlinear memory. Communications on Pure and Applied Analysis, 2005, 4 (4) : 721733. doi: 10.3934/cpaa.2005.4.721 
[14] 
ShuXiang Huang, FuCai Li, ChunHong Xie. Global existence and blowup of solutions to a nonlocal reactiondiffusion system. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 15191532. doi: 10.3934/dcds.2003.9.1519 
[15] 
Monica Marras, Stella Vernier Piro. On global existence and bounds for blowup time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535544. doi: 10.3934/proc.2013.2013.535 
[16] 
Hua Chen, Huiyang Xu. Global existence and blowup of solutions for infinitely degenerate semilinear pseudoparabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 11851203. doi: 10.3934/dcds.2019051 
[17] 
Zaihui Gan, Jian Zhang. Blowup, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 827846. doi: 10.3934/dcds.2012.32.827 
[18] 
Pierre Roux, Delphine Salort. Towards a further understanding of the dynamics in the excitatory NNLIF neuron model: Blowup and global existence. Kinetic and Related Models, 2021, 14 (5) : 819846. doi: 10.3934/krm.2021025 
[19] 
QuangMinh Tran, HongDanh Pham. Global existence and blowup results for a nonlinear model for a dynamic suspension bridge. Discrete and Continuous Dynamical Systems  S, 2021, 14 (12) : 45214550. doi: 10.3934/dcdss.2021135 
[20] 
Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blowup of solutions for a class of fractional pseudoparabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems  S, 2021, 14 (12) : 43374366. doi: 10.3934/dcdss.2021121 
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]