September  2018, 17(5): 1875-1897. doi: 10.3934/cpaa.2018089

Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential

1. 

University of Chinese Academy of Sciences and Wuhan Institute of Physics and Mathematics, CAS, Wuhan 430071, China

2. 

Center for Mathematical Sciences and Department of Mathematics, Wuhan University of Technology, Wuhan, 430070, China

* Corresponding author

Received  July 2017 Revised  November 2017 Published  April 2018

Fund Project: This work was supported by NFSC Grants 11471331,11501555 and 11471330.

We study a Kirchhoff type elliptic equation with trapping potential. The existence and blow-up behavior of solutions with normalized $L^{2}$-norm for this equation are discussed.

Citation: Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089
References:
[1]

A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305-330.  doi: 10.1090/S0002-9947-96-01532-2.  Google Scholar

[2]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-346.  doi: 10.1007/BF00250555.  Google Scholar

[3]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb R^{N}$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.  Google Scholar

[4]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York, 2003. Google Scholar

[5]

F. DalfovoS. GiorginiL. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Modern Phys., 71 (1999), 463-512.  doi: 10.1103/RevModPhys.71.463.  Google Scholar

[6]

P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262.   Google Scholar

[7]

A. L. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Modern Phys., 81 (2009), 647-691.  doi: 10.1103/RevModPhys.81.647.  Google Scholar

[8]

Y. J. Guo and R. Seiringer, On the mass concentration for Bose-Einstein conden-sates with attractive interactions, Lett. Math. Phys., 104 (2014), 141-156.  doi: 10.1007/s11005-013-0667-9.  Google Scholar

[9]

Y. J. GuoX. Y. Zeng and H. S. Zhou, Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations, J. Differential Equations, 256 (2014), 2079-2100.  doi: 10.1016/j.jde.2013.12.012.  Google Scholar

[10]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb R^{n}$, Math. Anal. Appl. Part A, pp. 369-402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981.  Google Scholar

[11]

Y. He and G. B. Li, Standing waves for a class of Kirchhoff type problems in $\mathbb R^{3}$ involving critical Sobolev exponents, Calc. Var. Partial Differential Equations, 54 (2015), 3067-3106.  doi: 10.1007/s00526-015-0894-2.  Google Scholar

[12]

Q. Han and F. H. Lin, Elliptic Partial Differential Equations, $2^{nd}$ edition, Courant Institute of Mathematical Sciences, New York, 2011. Google Scholar

[13]

X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb R^{3}$, J. Differential Equations, 252 (2012), 1813-1834.  doi: 10.1016/j.jde.2011.08.035.  Google Scholar

[14]

J. H. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in $\mathbb R^{N}$, J. Math. Anal. Appl., 369 (2010), 564-574.  doi: 10.1016/j.jmaa.2010.03.059.  Google Scholar

[15]

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. Google Scholar

[16]

O. Kavian and F. B. Weissler, Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation, Michigan Math. J., 41 (1994), 151-173.  doi: 10.1307/mmj/1029004922.  Google Scholar

[17]

K. Mcleod and J. Serrin, Uniqueness of solutions of semilinear Poisson equations, Proc. Natl. Acad. Sci. USA., 78 (1981), 6592-6595.   Google Scholar

[18]

G. B. Li and H. Y. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb R^{3}$, J. Differential Equations, 257 (2014), 566-600.  doi: 10.1016/j.jde.2014.04.011.  Google Scholar

[19]

M. Reed and B. Simon, Methods of Modern Mathematical Physics Ⅳ: Analysis of Operators, Academic Press, New York-London, 1978. Google Scholar

[20]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. Google Scholar

[21]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576.   Google Scholar

[22]

H. Y. Ye, The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, Math. Methods Appl. Sci., 38 (2015), 2663-2679.  doi: 10.1002/mma.3247.  Google Scholar

[23]

H. Y. Ye, The existence of normalized solutions for $L^{2}$-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys., 66 (2015), 1483-1497.  doi: 10.1007/s00033-014-0474-x.  Google Scholar

[24]

J. Zhang, Stability of attractive Bose-Einstein condensates, J. Stat. Phys., 101 (2000), 731-746. doi: 10.1023/A:1026437923987.  Google Scholar

[25]

X. Y. Zeng, Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 37 (2017), 1749-1762.  doi: 10.3934/dcds.2017073.  Google Scholar

[26]

X. Y. Zeng and Y. M. Zhang, Existence and asymptotic behavior for the ground state of quasilinear elliptic equation, arXiv: 1703.00183. Google Scholar

[27]

X. Y. Zeng and Y. M. Zhang, Existence and uniqueness of normalized solutions for the Kirchhoff equation, Appl. Math. Lett., 74 (2017), 52-59.  doi: 10.1016/j.aml.2017.05.012.  Google Scholar

show all references

References:
[1]

A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305-330.  doi: 10.1090/S0002-9947-96-01532-2.  Google Scholar

[2]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-346.  doi: 10.1007/BF00250555.  Google Scholar

[3]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb R^{N}$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.  Google Scholar

[4]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York, 2003. Google Scholar

[5]

F. DalfovoS. GiorginiL. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Modern Phys., 71 (1999), 463-512.  doi: 10.1103/RevModPhys.71.463.  Google Scholar

[6]

P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262.   Google Scholar

[7]

A. L. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Modern Phys., 81 (2009), 647-691.  doi: 10.1103/RevModPhys.81.647.  Google Scholar

[8]

Y. J. Guo and R. Seiringer, On the mass concentration for Bose-Einstein conden-sates with attractive interactions, Lett. Math. Phys., 104 (2014), 141-156.  doi: 10.1007/s11005-013-0667-9.  Google Scholar

[9]

Y. J. GuoX. Y. Zeng and H. S. Zhou, Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations, J. Differential Equations, 256 (2014), 2079-2100.  doi: 10.1016/j.jde.2013.12.012.  Google Scholar

[10]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb R^{n}$, Math. Anal. Appl. Part A, pp. 369-402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981.  Google Scholar

[11]

Y. He and G. B. Li, Standing waves for a class of Kirchhoff type problems in $\mathbb R^{3}$ involving critical Sobolev exponents, Calc. Var. Partial Differential Equations, 54 (2015), 3067-3106.  doi: 10.1007/s00526-015-0894-2.  Google Scholar

[12]

Q. Han and F. H. Lin, Elliptic Partial Differential Equations, $2^{nd}$ edition, Courant Institute of Mathematical Sciences, New York, 2011. Google Scholar

[13]

X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb R^{3}$, J. Differential Equations, 252 (2012), 1813-1834.  doi: 10.1016/j.jde.2011.08.035.  Google Scholar

[14]

J. H. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in $\mathbb R^{N}$, J. Math. Anal. Appl., 369 (2010), 564-574.  doi: 10.1016/j.jmaa.2010.03.059.  Google Scholar

[15]

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. Google Scholar

[16]

O. Kavian and F. B. Weissler, Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation, Michigan Math. J., 41 (1994), 151-173.  doi: 10.1307/mmj/1029004922.  Google Scholar

[17]

K. Mcleod and J. Serrin, Uniqueness of solutions of semilinear Poisson equations, Proc. Natl. Acad. Sci. USA., 78 (1981), 6592-6595.   Google Scholar

[18]

G. B. Li and H. Y. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb R^{3}$, J. Differential Equations, 257 (2014), 566-600.  doi: 10.1016/j.jde.2014.04.011.  Google Scholar

[19]

M. Reed and B. Simon, Methods of Modern Mathematical Physics Ⅳ: Analysis of Operators, Academic Press, New York-London, 1978. Google Scholar

[20]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. Google Scholar

[21]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), 567-576.   Google Scholar

[22]

H. Y. Ye, The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, Math. Methods Appl. Sci., 38 (2015), 2663-2679.  doi: 10.1002/mma.3247.  Google Scholar

[23]

H. Y. Ye, The existence of normalized solutions for $L^{2}$-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys., 66 (2015), 1483-1497.  doi: 10.1007/s00033-014-0474-x.  Google Scholar

[24]

J. Zhang, Stability of attractive Bose-Einstein condensates, J. Stat. Phys., 101 (2000), 731-746. doi: 10.1023/A:1026437923987.  Google Scholar

[25]

X. Y. Zeng, Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 37 (2017), 1749-1762.  doi: 10.3934/dcds.2017073.  Google Scholar

[26]

X. Y. Zeng and Y. M. Zhang, Existence and asymptotic behavior for the ground state of quasilinear elliptic equation, arXiv: 1703.00183. Google Scholar

[27]

X. Y. Zeng and Y. M. Zhang, Existence and uniqueness of normalized solutions for the Kirchhoff equation, Appl. Math. Lett., 74 (2017), 52-59.  doi: 10.1016/j.aml.2017.05.012.  Google Scholar

[1]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

[2]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[3]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[4]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[5]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[6]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[7]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[8]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[9]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[12]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

[13]

C. J. Price. A modified Nelder-Mead barrier method for constrained optimization. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020058

[14]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[15]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[16]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[17]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[18]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[19]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[20]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (153)
  • HTML views (203)
  • Cited by (3)

Other articles
by authors

[Back to Top]