September  2018, 17(5): 1957-1974. doi: 10.3934/cpaa.2018093

Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow

1. 

School of Mathematics and Statistics, Hefei Normal University, Hefei 230601, China

2. 

School of mathematical Science, University of Science and Technology of China, Hefei 230026, China

* Corresponding author: Wen Wang and Hui Zhou

Received  August 2017 Revised  November 2017 Published  April 2018

Fund Project: The first author is supported by the Higher School outstanding young talent support project of Anhui province in 2017 (gxyq2017048), the Higher School Natural Science Foundation of Anhui Province (KJ2017A937), the Young Foundtion of Hefei Normal University (2017QN41, 2017QN44) and the Natural Science Foundation of Anhui Province (1708085MA16).

In this paper, we prove some new local Aronson-Bénilan type gradient estimates for positive solutions of the porous medium equation
$u_{t}=Δ u^{m}, m>1$
coupled with Ricci flow, assuming that the Ricci curvature is bounded. As application, the related Harnack inequality is derived. Our results generalize known results. These results may be regarded as the generalizations of the gradient estimates of Lu-Ni-Vázquez-Villani and Huang-Huang-Li to the Ricci flow.
Citation: Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093
References:
[1]

D. G. Aronson and P. Bénilan, Régularité des I'équatiomilieux poreux dans $R^n$, C. R. Acad. Sci. Paris. Sér. A-B, 288 (1979), A103-A105.   Google Scholar

[2]

M. BailesteanuX. D. Cao and A. Pulemotov, Gradient estimates for the heat equation under the Ricci flow, J. Funct. Anal., 258 (2010), 3517-3542.   Google Scholar

[3]

E. Calabi, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J., 25 (1958), 45-56.   Google Scholar

[4]

H. Cao and M. Zhu, Aronson-Bénilan estimates for the porous medium equation under the Ricci flow, Journal De Mathématiques Pures Et Appliqués, 104 (2015), 90-94.   Google Scholar

[5]

D. G. Chen and C. W. Xiong, Gradient estimates for doubly nonlinear diffusion equations, Nonlinear Anal., 112 (2015), 156-164.   Google Scholar

[6]

R. S. Hamilton, A matrix Harnack estimates for the heat equation, Comm. Anal. Geom., 1 (1993), 113-126.   Google Scholar

[7]

R. S. Hamilton, Three manifolds with positive Ricci cuevature, J. Differential Geom., 17 (1982), 255-306.   Google Scholar

[8]

G. Y. HuangZ. J. Huang and H. Z. Li, Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds, Annals of Global Analysis & Geometry, 43 (2013), 209-232.   Google Scholar

[9]

S. Kuang and Q. S. Zhang, A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow, J. Funct. Anal., 255 (2008), 1008-1023.   Google Scholar

[10]

P. Li and S. T. Yau, On the parabolic kernel of the Schröinger operator, Acta Math., 156 (1986), 153-201.   Google Scholar

[11]

J. Y. Li, Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds, J. Funct. Anal., 100 (1991), 233-256.   Google Scholar

[12]

J. Li and X. Xu, Defferential Harnack inequalities on Riemannian manifolds I: Linear heat equation, Adv. in Math., 226 (2011), 4456-4491.   Google Scholar

[13]

S. P. Liu, Gradient estimates for solutions of the heat equation under flow, Pacific J. of Math., 243 (2009), 165-179.   Google Scholar

[14]

X. D. Li, Hamiltons Harnack inequality and the W-entropy formula on cpmplete Riemannian manfolds, Stochastic Process. Appl., 126 (2016), 1264-1283.   Google Scholar

[15]

S. Z. Li and X. D. Li, On Harnack ineqlities for Witten Laplacian on Riemannian manifolds with supper Ricci flows, to appear in the Special Issue in honor of Prof. N. Mok's 60th birthday, Asian J. Math., 2017, https://arxiv.org/abs/1706.05304 Google Scholar

[16]

S. Z. Li and X. D. Li, Hamilton differential Harnack inequality and W-entropy for Witten Laplacian on Riemannian manifolds, J. Func. Anal., (2017). doi: 10.1016/j.jfa.2017.  Google Scholar

[17]

S. Z. Li and X. D. Li, Harnack inequality and W-entropy formual for Witten Laplacian on Riemannian manifolds with K-supper Perelman Ricci flow, preprint, https://arxiv.org/abs/1412.7034 Google Scholar

[18]

P. LuL. NiJ. L. Vázquez and C. Villani, Local Aronson-Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds, J. Math. Pures Appl., 91 (2009), 1-19.   Google Scholar

[19]

L. MaL. Zhao and X. F. Song, Gradient estimate for the degenerate parabolic equation $u_{t}=Δ F(u)+H(u)$ on manifolds, J. Differential Equations, 224 (2008), 1157-1177.   Google Scholar

[20]

L. ShenS. YaoG. Zhang and X. Ren, Gradient estimate for porous medium equations under the Ricci flow, Appl. Math. J. Chinese Univ., 31 (2016), 481-490.   Google Scholar

[21]

J. Sun, Gradient estimates for positive solutions of the heat equation under geometric flow, Pacific J. Math., 253 (2011), 489-510.   Google Scholar

[22]

H. J. Sun, Higher eigenvalue estimates on riemannian manifolds with ricci curvature bounded below, Acta Math. Sinica (Chin. Ser.), 49 (2006), 539-548.   Google Scholar

[23]

W. Wang and P. Zhang, Some Gradient Estimates and Harnack Inequalities for Nonlinear Parabolic Equations on Riemannian Manifolds, Mathematische Nachrichten, 290 (2017), 1905-1917.   Google Scholar

[24]

Y. Z. Wang and W. Y. Chen, Gradient estimates and entropy monotonicity formula for doubly nonlinear diffusion equations on Riemannian manifolds, Math. Methods Appl. Sci., 37 (2014), 2772-2781.   Google Scholar

[25]

Y. Z. Wang and W. Y. Chen, Gradient estimates for weighted diffusion equations on smooth metric measure spaces. J. Math. (Wuhan), 33 (2013), 248-258. Google Scholar

[26]

Y. Z. Wang, E-entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds, submitted, 2017. Google Scholar

[27]

X. B. Zhu, Gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds, Nonlinear Analysis, 74 (2011), 5141-5146.   Google Scholar

show all references

References:
[1]

D. G. Aronson and P. Bénilan, Régularité des I'équatiomilieux poreux dans $R^n$, C. R. Acad. Sci. Paris. Sér. A-B, 288 (1979), A103-A105.   Google Scholar

[2]

M. BailesteanuX. D. Cao and A. Pulemotov, Gradient estimates for the heat equation under the Ricci flow, J. Funct. Anal., 258 (2010), 3517-3542.   Google Scholar

[3]

E. Calabi, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J., 25 (1958), 45-56.   Google Scholar

[4]

H. Cao and M. Zhu, Aronson-Bénilan estimates for the porous medium equation under the Ricci flow, Journal De Mathématiques Pures Et Appliqués, 104 (2015), 90-94.   Google Scholar

[5]

D. G. Chen and C. W. Xiong, Gradient estimates for doubly nonlinear diffusion equations, Nonlinear Anal., 112 (2015), 156-164.   Google Scholar

[6]

R. S. Hamilton, A matrix Harnack estimates for the heat equation, Comm. Anal. Geom., 1 (1993), 113-126.   Google Scholar

[7]

R. S. Hamilton, Three manifolds with positive Ricci cuevature, J. Differential Geom., 17 (1982), 255-306.   Google Scholar

[8]

G. Y. HuangZ. J. Huang and H. Z. Li, Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds, Annals of Global Analysis & Geometry, 43 (2013), 209-232.   Google Scholar

[9]

S. Kuang and Q. S. Zhang, A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow, J. Funct. Anal., 255 (2008), 1008-1023.   Google Scholar

[10]

P. Li and S. T. Yau, On the parabolic kernel of the Schröinger operator, Acta Math., 156 (1986), 153-201.   Google Scholar

[11]

J. Y. Li, Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds, J. Funct. Anal., 100 (1991), 233-256.   Google Scholar

[12]

J. Li and X. Xu, Defferential Harnack inequalities on Riemannian manifolds I: Linear heat equation, Adv. in Math., 226 (2011), 4456-4491.   Google Scholar

[13]

S. P. Liu, Gradient estimates for solutions of the heat equation under flow, Pacific J. of Math., 243 (2009), 165-179.   Google Scholar

[14]

X. D. Li, Hamiltons Harnack inequality and the W-entropy formula on cpmplete Riemannian manfolds, Stochastic Process. Appl., 126 (2016), 1264-1283.   Google Scholar

[15]

S. Z. Li and X. D. Li, On Harnack ineqlities for Witten Laplacian on Riemannian manifolds with supper Ricci flows, to appear in the Special Issue in honor of Prof. N. Mok's 60th birthday, Asian J. Math., 2017, https://arxiv.org/abs/1706.05304 Google Scholar

[16]

S. Z. Li and X. D. Li, Hamilton differential Harnack inequality and W-entropy for Witten Laplacian on Riemannian manifolds, J. Func. Anal., (2017). doi: 10.1016/j.jfa.2017.  Google Scholar

[17]

S. Z. Li and X. D. Li, Harnack inequality and W-entropy formual for Witten Laplacian on Riemannian manifolds with K-supper Perelman Ricci flow, preprint, https://arxiv.org/abs/1412.7034 Google Scholar

[18]

P. LuL. NiJ. L. Vázquez and C. Villani, Local Aronson-Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds, J. Math. Pures Appl., 91 (2009), 1-19.   Google Scholar

[19]

L. MaL. Zhao and X. F. Song, Gradient estimate for the degenerate parabolic equation $u_{t}=Δ F(u)+H(u)$ on manifolds, J. Differential Equations, 224 (2008), 1157-1177.   Google Scholar

[20]

L. ShenS. YaoG. Zhang and X. Ren, Gradient estimate for porous medium equations under the Ricci flow, Appl. Math. J. Chinese Univ., 31 (2016), 481-490.   Google Scholar

[21]

J. Sun, Gradient estimates for positive solutions of the heat equation under geometric flow, Pacific J. Math., 253 (2011), 489-510.   Google Scholar

[22]

H. J. Sun, Higher eigenvalue estimates on riemannian manifolds with ricci curvature bounded below, Acta Math. Sinica (Chin. Ser.), 49 (2006), 539-548.   Google Scholar

[23]

W. Wang and P. Zhang, Some Gradient Estimates and Harnack Inequalities for Nonlinear Parabolic Equations on Riemannian Manifolds, Mathematische Nachrichten, 290 (2017), 1905-1917.   Google Scholar

[24]

Y. Z. Wang and W. Y. Chen, Gradient estimates and entropy monotonicity formula for doubly nonlinear diffusion equations on Riemannian manifolds, Math. Methods Appl. Sci., 37 (2014), 2772-2781.   Google Scholar

[25]

Y. Z. Wang and W. Y. Chen, Gradient estimates for weighted diffusion equations on smooth metric measure spaces. J. Math. (Wuhan), 33 (2013), 248-258. Google Scholar

[26]

Y. Z. Wang, E-entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds, submitted, 2017. Google Scholar

[27]

X. B. Zhu, Gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds, Nonlinear Analysis, 74 (2011), 5141-5146.   Google Scholar

[1]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[2]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[3]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[6]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[9]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[10]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[11]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[12]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[14]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[16]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[17]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[20]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (119)
  • HTML views (220)
  • Cited by (2)

Other articles
by authors

[Back to Top]