In this paper, we prove the Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators $L_K+V$ with nonnegative potentials $V∈ L^q_{\rm{loc}}(\mathbb{R}^n)$ for $q>\frac{n}{2s}$ with $0 < s < 1$ and $n>2s$; that is to say, we obtain the existence of a fundamental solution $\mathfrak{e}_V$ for $L_K+V$ satisfying
$\begin{equation*}\bigl(L_K+V\bigr)\mathfrak{e}_V = \delta _0\,\,\text{ in $\mathbb{R}^n$ }\end{equation*}$
in the distribution sense, where $\delta _0$ denotes the Dirac delta mass at the origin. In addition, we obtain a decay of the fundamental solution $\mathfrak{e}_V$.
Citation: |
[1] | C. Bucur, Some observations on the Green function for the ball in the fractional Laplace framework, Comm. Pure and Appl. Anal., 15 (2016), 657-699. |
[2] | L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. P.D.E., 32 (2007), 1245-1260. |
[3] | W. Choi and Y.-C. Kim, Lp-mapping properties for nonlocal Schrödinger operators with certain potential, preprint, arXiv: math/0605406. |
[4] | E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. |
[5] | L. Ehrenpreis, Solution of some problems of division. Ⅰ. Division by a polynomial of derivation, Amer. J. Math., 76 (1954), 883-903. |
[6] | L. Ehrenpreis, Solution of some problems of division. Ⅰ. Division by a polynomial of derivation, Amer. J. Math., 77 (1955), 286-292. |
[7] | M. Fall and T. Weth, Liouville theorems for a general class of nonlocal operators, Potential. Anal., 45 (2016), 187-200. |
[8] | Q. Han and F. Lin, Elliptic Partial Differential Equations Courant Lecture Notes in Mathematics, American Mathematical Society, 1997. |
[9] | T. Kuusi, G. Mingione and Y. Sire, Nonlocal equations with measure data, Comm. Math. Phys., 337 (2015), 1317-1368. |
[10] | N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York, 1972. |
[11] | B. Malgrange, Existence et approximation des solutions des équations aux d'erivées partielles et des équations de convolution, Ann. Inst. Fourier, 6 (1955/56), 271-355. |
[12] | M. Reed and B. Simon, Functional Analysis I,Methods of Modern Mathematical Physics, Academic Press, 1970. |
[13] | W. Rudin, Functional Analysis 2nd edition, International Series in Pure and Applied Mathematics. McGraw-Hill, 1991. |
[14] | R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. |
[15] | E. M. Stein, Singular Integrals and Differentiability, Princeton Univ. Press, 1970. |