September  2018, 17(5): 1993-2010. doi: 10.3934/cpaa.2018095

The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potentials

1. 

Department of Mathematics Education, Incheon National University, Incheon 22012, Republic of Korea

2. 

Department of Mathematics Education, Korea University, Seoul 02841, Republic of Korea

* Corresponding author: Yong-Cheol Kim

Received  August 2017 Revised  January 2018 Published  April 2018

In this paper, we prove the Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators $L_K+V$ with nonnegative potentials $V∈ L^q_{\rm{loc}}(\mathbb{R}^n)$ for $q>\frac{n}{2s}$ with $0 < s < 1$ and $n>2s$; that is to say, we obtain the existence of a fundamental solution $\mathfrak{e}_V$ for $L_K+V$ satisfying
$\begin{equation*}\bigl(L_K+V\bigr)\mathfrak{e}_V = \delta _0\,\,\text{ in $\mathbb{R}^n$ }\end{equation*}$
in the distribution sense, where $\delta _0$ denotes the Dirac delta mass at the origin. In addition, we obtain a decay of the fundamental solution $\mathfrak{e}_V$.
Citation: Woocheol Choi, Yong-Cheol Kim. The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potentials. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1993-2010. doi: 10.3934/cpaa.2018095
References:
[1]

C. Bucur, Some observations on the Green function for the ball in the fractional Laplace framework, Comm. Pure and Appl. Anal., 15 (2016), 657-699.   Google Scholar

[2]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. P.D.E., 32 (2007), 1245-1260.   Google Scholar

[3]

W. Choi and Y.-C. Kim, Lp-mapping properties for nonlocal Schrödinger operators with certain potential, preprint, arXiv: math/0605406. Google Scholar

[4]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.   Google Scholar

[5]

L. Ehrenpreis, Solution of some problems of division. Ⅰ. Division by a polynomial of derivation, Amer. J. Math., 76 (1954), 883-903.   Google Scholar

[6]

L. Ehrenpreis, Solution of some problems of division. Ⅰ. Division by a polynomial of derivation, Amer. J. Math., 77 (1955), 286-292.   Google Scholar

[7]

M. Fall and T. Weth, Liouville theorems for a general class of nonlocal operators, Potential. Anal., 45 (2016), 187-200.   Google Scholar

[8]

Q. Han and F. Lin, Elliptic Partial Differential Equations Courant Lecture Notes in Mathematics, American Mathematical Society, 1997. Google Scholar

[9]

T. KuusiG. Mingione and Y. Sire, Nonlocal equations with measure data, Comm. Math. Phys., 337 (2015), 1317-1368.   Google Scholar

[10] N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York, 1972.   Google Scholar
[11]

B. Malgrange, Existence et approximation des solutions des équations aux d'erivées partielles et des équations de convolution, Ann. Inst. Fourier, 6 (1955/56), 271-355.   Google Scholar

[12] M. Reed and B. Simon, Functional Analysis I,Methods of Modern Mathematical Physics, Academic Press, 1970.   Google Scholar
[13]

W. Rudin, Functional Analysis 2nd edition, International Series in Pure and Applied Mathematics. McGraw-Hill, 1991. Google Scholar

[14]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.   Google Scholar

[15] E. M. Stein, Singular Integrals and Differentiability, Princeton Univ. Press, 1970.   Google Scholar

show all references

References:
[1]

C. Bucur, Some observations on the Green function for the ball in the fractional Laplace framework, Comm. Pure and Appl. Anal., 15 (2016), 657-699.   Google Scholar

[2]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. P.D.E., 32 (2007), 1245-1260.   Google Scholar

[3]

W. Choi and Y.-C. Kim, Lp-mapping properties for nonlocal Schrödinger operators with certain potential, preprint, arXiv: math/0605406. Google Scholar

[4]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.   Google Scholar

[5]

L. Ehrenpreis, Solution of some problems of division. Ⅰ. Division by a polynomial of derivation, Amer. J. Math., 76 (1954), 883-903.   Google Scholar

[6]

L. Ehrenpreis, Solution of some problems of division. Ⅰ. Division by a polynomial of derivation, Amer. J. Math., 77 (1955), 286-292.   Google Scholar

[7]

M. Fall and T. Weth, Liouville theorems for a general class of nonlocal operators, Potential. Anal., 45 (2016), 187-200.   Google Scholar

[8]

Q. Han and F. Lin, Elliptic Partial Differential Equations Courant Lecture Notes in Mathematics, American Mathematical Society, 1997. Google Scholar

[9]

T. KuusiG. Mingione and Y. Sire, Nonlocal equations with measure data, Comm. Math. Phys., 337 (2015), 1317-1368.   Google Scholar

[10] N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York, 1972.   Google Scholar
[11]

B. Malgrange, Existence et approximation des solutions des équations aux d'erivées partielles et des équations de convolution, Ann. Inst. Fourier, 6 (1955/56), 271-355.   Google Scholar

[12] M. Reed and B. Simon, Functional Analysis I,Methods of Modern Mathematical Physics, Academic Press, 1970.   Google Scholar
[13]

W. Rudin, Functional Analysis 2nd edition, International Series in Pure and Applied Mathematics. McGraw-Hill, 1991. Google Scholar

[14]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.   Google Scholar

[15] E. M. Stein, Singular Integrals and Differentiability, Princeton Univ. Press, 1970.   Google Scholar
[1]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[2]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[3]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[5]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[6]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[9]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[10]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[11]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[14]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[15]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[16]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[17]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[18]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[19]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[20]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (100)
  • HTML views (203)
  • Cited by (1)

Other articles
by authors

[Back to Top]